Esercizi sulle Formule di Green

Esercizi sulle Formule di Green +Esercizi sulle Formule di Green
+Esercizi sulle Formule di Green

Versione italiana

Esercizi sulle Formule di Green

Le formule di Green sono strumenti fondamentali nell’analisi vettoriale e collegano l’integrale di una funzione su una regione del piano con l’integrale della sua derivata su un contorno di quella regione. Esistono due forme principali delle formule di Green: la forma per il campo scalare e la forma per il campo vettoriale.

Concetti Chiave

  1. Teorema di Green: Se CCC è un contorno chiuso e DDD è la regione delimitata da CCC, allora per un campo vettoriale \mathbf{F} = (P, Q)F=(P,Q)\mathbf{F} = (P, Q) con PPP e QQQ continue su DDD e con derivate parziali continue, si ha:

    \oint_C (P \, dx + Q \, dy) = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA C(Pdx+Qdy)=D(QxPy)dA\oint_C (P \, dx + Q \, dy) = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA

  2. Interpretazione Geometrica: L’integrale a sinistra rappresenta il lavoro fatto da un campo vettoriale lungo il contorno CCC, mentre l’integrale a destra rappresenta il flusso del rotore del campo attraverso la regione DDD.

  3. Applicazioni: Le formule di Green sono utilizzate in fisica e ingegneria, ad esempio per calcolare il lavoro, il flusso e in problemi di elettromagnetismo.

Esercizi

Esercizio 1

Calcola l’integrale di linea:

\oint_C (x^2 \, dy + y^2 \, dx) C(x2dy+y2dx)\oint_C (x^2 \, dy + y^2 \, dx)

dove CCC è il contorno del quadrato con vertici (0,0)(0,0)(0,0), (1,0)(1,0)(1,0), (1,1)(1,1)(1,1), (0,1)(0,1)(0,1).

Soluzione:

Identifichiamo P = y^2P=y2P = y^2 e Q = x^2Q=x2Q = x^2. Calcoliamo le derivate parziali:

\frac{\partial Q}{\partial x} = 2x, \quad \frac{\partial P}{\partial y} = 2y Qx=2x,Py=2y\frac{\partial Q}{\partial x} = 2x, \quad \frac{\partial P}{\partial y} = 2y

Quindi, il rotore è:

\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2x - 2y QxPy=2x2y\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2x - 2y

Ora calcoliamo l’integrale doppio su DDD:

\iint_D (2x - 2y) \, dA D(2x2y)dA\iint_D (2x - 2y) \, dA

Dove DDD è il quadrato con 0 \leq x \leq 10x10 \leq x \leq 1 e 0 \leq y \leq 10y10 \leq y \leq 1:

\iint_D (2x - 2y) \, dA = \int_0^1 \int_0^1 (2x - 2y) \, dy \, dx D(2x2y)dA=0101(2x2y)dydx\iint_D (2x - 2y) \, dA = \int_0^1 \int_0^1 (2x - 2y) \, dy \, dx

Calcoliamo l’integrale interno:

\int_0^1 (2x - 2y) \, dy = [2xy - y^2]_0^1 = 2x - 1 01(2x2y)dy=[2xyy2]01=2x1\int_0^1 (2x - 2y) \, dy = [2xy - y^2]_0^1 = 2x - 1

Ora calcoliamo l’integrale esterno:

\int_0^1 (2x - 1) \, dx = [x^2 - x]_0^1 = 1 - 1 = 0 01(2x1)dx=[x2x]01=11=0\int_0^1 (2x - 1) \, dx = [x^2 - x]_0^1 = 1 - 1 = 0

Quindi:

\oint_C (x^2 \, dy + y^2 \, dx) = 0 C(x2dy+y2dx)=0\oint_C (x^2 \, dy + y^2 \, dx) = 0

Esercizio 2

Verifica il Teorema di Green per il campo vettoriale \mathbf{F} = (y, x)F=(y,x)\mathbf{F} = (y, x) su un cerchio di raggio 111 centrato nell’origine.

Soluzione:

Identifichiamo P = yP=yP = y e Q = xQ=xQ = x. Calcoliamo le derivate parziali:

\frac{\partial Q}{\partial x} = 1, \quad \frac{\partial P}{\partial y} = 1 Qx=1,Py=1\frac{\partial Q}{\partial x} = 1, \quad \frac{\partial P}{\partial y} = 1

Quindi, il rotore è:

\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1 - 1 = 0 QxPy=11=0\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1 - 1 = 0

Ora calcoliamo l’integrale doppio su DDD (il cerchio di raggio 111):

\iint_D 0 \, dA = 0 D0dA=0\iint_D 0 \, dA = 0

Quindi, secondo il Teorema di Green, abbiamo:

\oint_C (y \, dx + x \, dy) = 0 C(ydx+xdy)=0 \oint_C (y \, dx + x \, dy) = 0

Questo è coerente con il fatto che il rotore del campo vettoriale è zero, il che implica che non c’è flusso attraverso il contorno CCC.

Esercizio 3

Calcola l’integrale di linea:

\oint_C (3x^2 \, dy + 2y^2 \, dx) C(3x2dy+2y2dx) \oint_C (3x^2 \, dy + 2y^2 \, dx)

dove CCC è il contorno del triangolo con vertici (0,0)(0,0)(0,0), (1,0)(1,0)(1,0), (1,1)(1,1)(1,1), (0,1)(0,1)(0,1).

Soluzione:

Identifichiamo P = 2y^2P=2y2P = 2y^2 e Q = 3x^2Q=3x2Q = 3x^2. Calcoliamo le derivate parziali:

\frac{\partial Q}{\partial x} = 6x, \quad \frac{\partial P}{\partial y} = 4y Qx=6x,Py=4y \frac{\partial Q}{\partial x} = 6x, \quad \frac{\partial P}{\partial y} = 4y

Quindi, il rotore è:

\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 6x - 4y QxPy=6x4y \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 6x - 4y

Ora calcoliamo l’integrale doppio su DDD (il triangolo con vertici (0,0)(0,0)(0,0), (1,0)(1,0)(1,0), (1,1)(1,1)(1,1)):

\iint_D (6x - 4y) \, dA D(6x4y)dA \iint_D (6x - 4y) \, dA

Per calcolare l’integrale, possiamo usare i limiti di integrazione per il triangolo:

\iint_D (6x - 4y) \, dA = \int_0^1 \int_0^x (6x - 4y) \, dy \, dx D(6x4y)dA=010x(6x4y)dydx \iint_D (6x - 4y) \, dA = \int_0^1 \int_0^x (6x - 4y) \, dy \, dx

Calcoliamo l’integrale interno:

\int_0^x (6x - 4y) \, dy = [6xy - 2y^2]_0^x = 6x^2 - 2x^2 = 4x^2 0x(6x4y)dy=[6xy2y2]0x=6x22x2=4x2 \int_0^x (6x - 4y) \, dy = [6xy - 2y^2]_0^x = 6x^2 - 2x^2 = 4x^2

Ora calcoliamo l’integrale esterno:

\int_0^1 4x^2 \, dx = \left[ \frac{4}{3} x^3 \right]_0^1 = \frac{4}{3} 014x2dx=[43x3]01=43 \int_0^1 4x^2 \, dx = \left[ \frac{4}{3} x^3 \right]_0^1 = \frac{4}{3}

Quindi, secondo il Teorema di Green, abbiamo:

\oint_C (3x^2 \, dy + 2y^2 \, dx) = \frac{4}{3} C(3x2dy+2y2dx)=43 \oint_C (3x^2 \, dy + 2y^2 \, dx) = \frac{4}{3}

English version

Green’s Formulas Exercises

Green’s formulas are fundamental tools in vector analysis and connect the integral of a function over a region of the plane with the integral of its derivative over a contour of that region. There are two main forms of Green’s formulas: the scalar field form and the vector field form.

Key Concepts

  1. Green’s Theorem: If CCC is a closed boundary and DDD is the region bounded by CCC, then for a vector field \mathbf{F} = (P, Q)F=(P,Q)\mathbf{F} = (P, Q) with PPP and QQQ continuous on DDD and with continuous partial derivatives, we have:

\oint_C (P \, dx + Q \, dy) = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA C(Pdx+Qdy)=D(QxPy)dA\oint_C (P \, dx + Q \, dy) = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA

  1. Geometric Interpretation: The integral on the left represents the work done by a vector field along the boundary CCC, while the integral on the right represents the flux of the field’s rotor through the region DDD.

  2. Applications: Green’s formulas are used in physics and engineering, for example to calculate work, flux and in problems of electromagnetism.

Exercises

Exercise 1

Calculate the line integral:

\oint_C (x^2 \, dy + y^2 \, dx) C(x2dy+y2dx)\oint_C (x^2 \, dy + y^2 \, dx)

where CCC is the boundary of the square with vertices (0,0)(0,0)(0,0), (1,0)(1,0)(1,0), (1,1)(1,1)(1,1), (0,1)(0,1)(0,1).

Solution:

Let P = y^2P=y2P = y^2 and Q = x^2Q=x2Q = x^2. Let’s calculate the partial derivatives:

\frac{\partial Q}{\partial x} = 2x, \quad \frac{\partial P}{\partial y} = 2y Qx=2x,Py=2y\frac{\partial Q}{\partial x} = 2x, \quad \frac{\partial P}{\partial y} = 2y

So, the curl is:

\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2x - 2y QxPy=2x2y\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2x - 2y

Now let’s calculate the double integral on DDD:

\iint_D (2x - 2y) \, dA D(2x2y)dA\iint_D (2x - 2y) \, dA

Where DDD is the square with 0 \leq x \leq 10x10 \leq x \leq 1 and 0 \leq y \leq 10y10 \leq y \leq 1:

\iint_D (2x - 2y) \, dA = \int_0^1 \int_0^1 (2x - 2y) \, dy \, dx D(2x2y)dA=0101(2x2y)dydx\iint_D (2x - 2y) \, dA = \int_0^1 \int_0^1 (2x - 2y) \, dy \, dx

Let’s calculate the internal integral:

\int_0^1 (2x - 2y) \, dy = [2xy - y^2]_0^1 = 2x - 1 01(2x2y)dy=[2xyy2]01=2x1\int_0^1 (2x - 2y) \, dy = [2xy - y^2]_0^1 = 2x - 1

Now let’s calculate the external integral:

\int_0^1 (2x - 1) \, dx = [x^2 - x]_0^1 = 1 - 1 = 0 01(2x1)dx=[x2x]01=11=0\int_0^1 (2x - 1) \, dx = [x^2 - x]_0^1 = 1 - 1 = 0

So:

\oint_C (x^2 \, dy + y^2 \, dx) = 0 C(x2dy+y2dx)=0\oint_C (x^2 \, dy + y^2 \, dx) = 0

Exercise 2

Verify Green’s Theorem for the vector field \mathbf{F} = (y, x)F=(y,x)\mathbf{F} = (y, x) on a circle of radius 111 centered at the origin.

Solution:

Let’s identify P = yP=yP = y and Q = xQ=xQ = x. Let’s compute the partial derivatives:

\frac{\partial Q}{\partial x} = 1, \quad \frac{\partial P}{\partial y} = 1 Qx=1,Py=1\frac{\partial Q}{\partial x} = 1, \quad \frac{\partial P}{\partial y} = 1

So, the curl is:

\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1 - 1 = 0 QxPy=11=0\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1 - 1 = 0

Now let’s compute the double integral on DDD (the circle of radius 111):

\iint_D 0 \, dA = 0 D0dA=0\iint_D 0 \, dA = 0

So, by Green’s Theorem, we have:

\oint_C (y \, dx + x \, dy) = 0 C(ydx+xdy)=0 \oint_C (y \, dx + x \, dy) = 0

This is consistent with the fact that the curl of the vector field is zero, which implies that there is no flux through the boundary CCC.

Exercise 3

Calculate the line integral:

\oint_C (3x^2 \, dy + 2y^2 \, dx) C(3x2dy+2y2dx) \oint_C (3x^2 \, dy + 2y^2 \, dx)

where CCC is the contour of the triangle with vertices (0,0)(0,0)(0,0), (1,0)(1,0)(1,0), (1,1)(1,1)(1,1), (0,1)(0,1)(0,1).

Solution:

Let P = 2y^2P=2y2P = 2y^2 and Q = 3x^2Q=3x2Q = 3x^2. Let’s calculate the partial derivatives:

\frac{\partial Q}{\partial x} = 6x, \quad \frac{\partial P}{\partial y} = 4y Qx=6x,Py=4y \frac{\partial Q}{\partial x} = 6x, \quad \frac{\partial P}{\partial y} = 4y

So, the curl is:

\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 6x - 4y QxPy=6x4y \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 6x - 4y

Now let’s calculate the double integral on DDD (the triangle with vertices (0,0)(0,0)(0,0), (1,0)(1,0)(1,0), (1,1)(1,1)(1,1)):

\iint_D (6x - 4y) \, dA D(6x4y)dA \iint_D (6x - 4y) \, dA

To calculate the integral, we can use the limits of integration for the triangle:

\iint_D (6x - 4y) \, dA = \int_0^1 \int_0^x (6x - 4y) \, dy \, dx D(6x4y)dA=010x(6x4y)dydx \iint_D (6x - 4y) \, dA = \int_0^1 \int_0^x (6x - 4y) \, dy \, dx

Let’s calculate the internal integral:

\int_0^x (6x - 4y) \, dy = [6xy - 2y^2]_0^x = 6x^2 - 2x^2 = 4x^2 0x(6x4y)dy=[6xy2y2]0x=6x22x2=4x2 \int_0^x (6x - 4y) \, dy = [6xy - 2y^2]_0^x = 6x^2 - 2x^2 = 4x^2

Now let’s calculate the external integral:

\int_0^1 4x^2 \, dx = \left[ \frac{4}{3} x^3 \right]_0^1 = \frac{4}{3} 014x2dx=[43x3]01=43 \int_0^1 4x^2 \, dx = \left[ \frac{4}{3} x^3 \right]_0^1 = \frac{4}{3}

So, according to Green’s Theorem, we have:

\oint_C (3x^2 \, dy + 2y^2 \, dx) = \frac{4}{3} C(3x2dy+2y2dx)=43 \oint_C (3x^2 \, dy + 2y^2 \, dx) = \frac{4}{3}

Commenti