Esercizi sugli integrali impropri

Esercizi sugli integrali impropri +Esercizi sugli integrali impropri
+Esercizi sugli integrali impropri

Versione italiana

Esercizi sugli integrali impropri

Teoria degli Integrali Impropri

Definizione

Un integrale improprio è un integrale che presenta una delle seguenti caratteristiche:

  1. Limiti Infiniti: L’integrale ha almeno uno dei limiti di integrazione che tende a infinito. Ad esempio:

    \int_{a}^{\infty} f(x) \, dx 
    af(x)dx\int_{a}^{\infty} f(x) \, dx
  2. Discontinuità: La funzione integranda presenta discontinuità in un punto all’interno dell’intervallo di integrazione. Ad esempio:

    \int_{a}^{b} f(x) \, dx 
    abf(x)dx\int_{a}^{b} f(x) \, dx

dove f(x)f(x)f(x) ha una discontinuità in c \in (a, b)c(a,b)c \in (a, b).

Calcolo degli Integrali Impropri

Per calcolare un integrale improprio, si utilizza il limite. Ad esempio, per un integrale con limite infinito:

\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx 
af(x)dx=limbabf(x)dx\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx

Per un integrale con discontinuità:

\int_{a}^{b} f(x) \, dx = \lim_{\epsilon \to 0} \left( \int_{a}^{c - \epsilon} f(x) \, dx + \int_{c + \epsilon}^{b} f(x) \, dx \right)
abf(x)dx=limϵ0(acϵf(x)dx+c+ϵbf(x)dx)\int_{a}^{b} f(x) \, dx = \lim_{\epsilon \to 0} \left( \int_{a}^{c - \epsilon} f(x) \, dx + \int_{c + \epsilon}^{b} f(x) \, dx \right)

Esercizi sugli Integrali Impropri

Esercizio 1: Limite Infinito

Calcola l’integrale improprio:

I = \int_{1}^{\infty} \frac{1}{x^2} \, dx 
I=11x2dxI = \int_{1}^{\infty} \frac{1}{x^2} \, dx

Soluzione:
Scriviamo l’integrale come limite:

I = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^2} \, dx 
I=limb1b1x2dxI = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^2} \, dx

Calcoliamo l’integrale definito:

\int \frac{1}{x^2} \, dx = -\frac{1}{x}
1x2dx=1x\int \frac{1}{x^2} \, dx = -\frac{1}{x}

Quindi,

I = \lim_{b \to \infty} \left[ -\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} (-\frac{1}{b} + 1) = 0 + 1 = 1
I=limb[1x]1b=limb(1b+1)=0+1=1I = \lim_{b \to \infty} \left[ -\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} (-\frac{1}{b} + 1) = 0 + 1 = 1

L’integrale converge a 1.

Esercizio 2: Discontinuità

Calcola l’integrale improprio:

I = \int_{0}^{1} \frac{1}{\sqrt{x}} \, dx 
I=011xdxI = \int_{0}^{1} \frac{1}{\sqrt{x}} \, dx

Soluzione:
Poiché la funzione ha una discontinuità in x = 0x=0x = 0, scriviamo l’integrale come limite:

I = \lim_{\epsilon \to 0^+} \int_{\epsilon}^{1} x^{-\frac{1}{2}}\, dx 
I=limϵ0+ϵ1x12dxI = \lim_{\epsilon \to 0^+} \int_{\epsilon}^{1} x^{-\frac{1}{2}}\, dx

Calcoliamo l’integrale definito:

\int x^{-\frac{1}{2}}\, dx = 2x^{\frac{1}{2}}
x12dx=2x12\int x^{-\frac{1}{2}}\, dx = 2x^{\frac{1}{2}}

Quindi,

I = \lim_{\epsilon \to 0^+} [2x^{\frac{1}{2}}]_{\epsilon}^{1} = 2(1 - (\sqrt{\epsilon})) = 2(1 - 0) = 2
I=limϵ0+[2x12]ϵ1=2(1(ϵ))=2(10)=2I = \lim_{\epsilon \to 0^+} [2x^{\frac{1}{2}}]_{\epsilon}^{1} = 2(1 - (\sqrt{\epsilon})) = 2(1 - 0) = 2

L’integrale converge a 2.

Esercizio 3: Limite Infinito con Funzione Esponenziale

Calcola l’integrale improprio:

I = \int_{0}^{\infty} e^{-x} \, dx 
I=0exdxI = \int_{0}^{\infty} e^{-x} \, dx

Soluzione:
Scriviamo l’integrale come limite:

I = \lim_{b \to \infty} \int_{0}^{b} e^{-x} \, dx 
I=limb0bexdxI = \lim_{b \to \infty} \int_{0}^{b} e^{-x} \, dx

Calcoliamo l’integrale definito:

\int e^{-x}\, dx = -e^{-x}
exdx=ex\int e^{-x}\, dx = -e^{-x}

Quindi,

I = \lim_{b \to \infty} [-e^{-x}]_{0}^{b} = -e^{-b} + e^{0}
I=limb[ex]0b=eb+e0I = \lim_{b \to \infty} [-e^{-x}]_{0}^{b} = -e^{-b} + e^{0}

Poiché e^{-b}ebe^{-b} tende a 0 quando bbb tende a infinito:

I = 0 + 1 = 1
I=0+1=1I = 0 + 1 = 1

L’integrale converge a 1.

Esercizio 4: Confronto di Integrali Impropri

Determina se gli integrali seguenti convergono o divergono:

a) I_1 = \int_{1}^{\infty} e^{-x^2}\, dxI1=1ex2dxI_1 = \int_{1}^{\infty} e^{-x^2}\, dx
b) I_2 = \int_{0}^{\infty} x\, e^{-x}\, dxI2=0xexdxI_2 = \int_{0}^{\infty} x\, e^{-x}\, dx

Soluzione:
a) Per l’integrale I_1I1I_1 possiamo notare che la funzione e^{-x^2}ex2e^{-x^2} decresce molto rapidamente. Possiamo confrontare con una funzione che sappiamo converge. Infatti,

I_1 < I_3 = C
I1<I3=CI_1 < I_3 = C

per qualche costante C. Dunque, converge.

b) Per l’integrale I_2I2I_2 possiamo calcolare direttamente:

Utilizziamo il limite:

I_2 = \lim_{b\to\infty}\int_0^b x e^{-x}\,dx
I2=limb0bxexdxI_2 = \lim_{b\to\infty}\int_0^b x e^{-x}\,dx

Utilizzando integrazione per parti con u=xu=xu=x e dv=e^{-x}\,dxdv=exdxdv=e^{-x}\,dx, otteniamo:

  • du=dxdu=dxdu=dx
  • v=-e^{-x}v=exv=-e^{-x}

Quindi,

I_2=\lim_{b\to\infty}\left[-xe^{-x}\bigg|_0^b+\int_0^be^{-x}\,dx\right]
=0+[-e^{-x}]_0^b=0+(-(-e^{0}))=1
I2=limb[xex0b+0bexdx]=0+[ex]0b=0+((e0))=1I_2=\lim_{b\to\infty}\left[-xe^{-x}\bigg|_0^b+\int_0^be^{-x}\,dx\right] =0+[-e^{-x}]_0^b=0+(-(-e^{0}))=1

L’integrale converge a 1.

English version

Improper Integral Exercises

Improper Integral Theory

Definition

An improper integral is an integral that has one of the following characteristics:

  1. Infinite Limits: The integral has at least one of the limits of integration that tends to infinity. For example:
\int_{a}^{\infty} f(x) \, dx
af(x)dx\int_{a}^{\infty} f(x) \, dx
  1. Discontinuity: The integrand function has discontinuity at a point within the interval of integration. For example:
\int_{a}^{b} f(x) \, dx
abf(x)dx\int_{a}^{b} f(x) \, dx

where f(x)f(x)f(x) has a discontinuity at c \in (a, b)c(a,b)c \in (a, b).

Improper Integral Calculation

To calculate an improper integral, the limit is used. For example, for an integral with infinite limit:

\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx
af(x)dx=limbabf(x)dx\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx

For an integral with discontinuity:

\int_{a}^{b} f(x) \, dx = \lim_{\epsilon \to 0} \left( \int_{a}^{c - \epsilon} f(x) \, dx + \int_{c + \epsilon}^{b} f(x) \, dx \right)
abf(x)dx=limϵ0(acϵf(x)dx+c+ϵbf(x)dx)\int_{a}^{b} f(x) \, dx = \lim_{\epsilon \to 0} \left( \int_{a}^{c - \epsilon} f(x) \, dx + \int_{c + \epsilon}^{b} f(x) \, dx \right)

Exercises on Improper Integrals

Exercise 1: Infinite Limit

Calculate the improper integral:

I = \int_{1}^{\infty} \frac{1}{x^2} \, dx
I=11x2dxI = \int_{1}^{\infty} \frac{1}{x^2} \, dx

Solution:
Let’s write the integral as a limit:

I = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^2} \, dx
I=limb1b1x2dxI = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^2} \, dx

Let’s calculate the definite integral:

\int \frac{1}{x^2} \, dx = -\frac{1}{x}
1x2dx=1x\int \frac{1}{x^2} \, dx = -\frac{1}{x}

So,

I = \lim_{b \to \infty} \left[ -\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} (-\frac{1}{b} + 1) = 0 + 1 = 1
I=limb[1x]1b=limb(1b+1)=0+1=1I = \lim_{b \to \infty} \left[ -\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} (-\frac{1}{b} + 1) = 0 + 1 = 1

The integral converges to 1.

Exercise 2: Discontinuity

Calculate the improper integral:

I = \int_{0}^{1} \frac{1}{\sqrt{x}} \, dx
I=011xdxI = \int_{0}^{1} \frac{1}{\sqrt{x}} \, dx

Solution:
Since the function has a discontinuity at x = 0x=0x = 0, we write the integral as a limit:

I = \lim_{\epsilon \to 0^+} \int_{\epsilon}^{1} x^{-\frac{1}{2}}\, dx
I=limϵ0+ϵ1x12dxI = \lim_{\epsilon \to 0^+} \int_{\epsilon}^{1} x^{-\frac{1}{2}}\, dx

Calculate the definite integral:

\int x^{-\frac{1}{2}}\, dx = 2x^{\frac{1}{2}}
x12dx=2x12\int x^{-\frac{1}{2}}\, dx = 2x^{\frac{1}{2}}

So,

I = \lim_{\epsilon \to 0^+} [2x^{\frac{1}{2}}]_{\epsilon}^{1} = 2(1 - (\sqrt{\epsilon})) = 2(1 - 0) = 2
I=limϵ0+[2x12]ϵ1=2(1(ϵ))=2(10)=2I = \lim_{\epsilon \to 0^+} [2x^{\frac{1}{2}}]_{\epsilon}^{1} = 2(1 - (\sqrt{\epsilon})) = 2(1 - 0) = 2

The integral converges to 2.

Exercise 3: Infinite Limit with Exponential Function

Calculate the improper integral:

I = \int_{0}^{\infty} e^{-x} \, dx
I=0exdxI = \int_{0}^{\infty} e^{-x} \, dx

Solution:
Let’s write the integral as a limit:

I = \lim_{b \to \infty} \int_{0}^{b} e^{-x} \, dx
I=limb0bexdxI = \lim_{b \to \infty} \int_{0}^{b} e^{-x} \, dx

Let’s calculate the definite integral:

\int e^{-x}\, dx = -e^{-x}
exdx=ex\int e^{-x}\, dx = -e^{-x}

So,

I = \lim_{b \to \infty} [-e^{-x}]_{0}^{b} = -e^{-b} + e^{0}
I=limb[ex]0b=eb+e0I = \lim_{b \to \infty} [-e^{-x}]_{0}^{b} = -e^{-b} + e^{0}

Since e^{-b}ebe^{-b} tends to 0 when bbb tends to infinity:

I = 0 + 1 = 1
I=0+1=1I = 0 + 1 = 1

The integral converges to 1.

Exercise 4: Comparison of Improper Integrals

Determine whether the following integrals converge or diverge:

a) I_1 = \int_{1}^{\infty} e^{-x^2}\, dxI1=1ex2dxI_1 = \int_{1}^{\infty} e^{-x^2}\, dx
b) I_2 = \int_{0}^{\infty} x\, e^{-x}\, dxI2=0xexdxI_2 = \int_{0}^{\infty} x\, e^{-x}\, dx

Solution:
a) For the integral I_1I1I_1 we can notice that the function e^{-x^2}ex2e^{-x^2} decreases very rapidly. We can compare with a function that we know converges. In fact,

I_1 < I_3 = C
I1<I3=CI_1 < I_3 = C

for some constant C. Therefore, converges.

b) For the integral I_2I2I_2 we can directly calculate:

We use the limit:

I_2 = \lim_{b\to\infty}\int_0^b x e^{-x}\,dx
I2=limb0bxexdxI_2 = \lim_{b\to\infty}\int_0^b x e^{-x}\,dx

Using integration by parts with u=xu=xu=x and dv=e^{-x}\,dxdv=exdxdv=e^{-x}\,dx, we get:

  • du=dxdu=dxdu=dx
  • v=-e^{-x}v=exv=-e^{-x}

So,

I_2=\lim_{b\to\infty}\left[-xe^{-x}\bigg|_0^b+\int_0^be^{-x}\,dx\right]
=0+[-e^{-x}]_0^b=0+(-(-e^{0}))=1
I2=limb[xex0b+0bexdx]=0+[ex]0b=0+((e0))=1I_2=\lim_{b\to\infty}\left[-xe^{-x}\bigg|_0^b+\int_0^be^{-x}\,dx\right] =0+[-e^{-x}]_0^b=0+(-(-e^{0}))=1

The integral converges to 1.

Commenti