Versione italiana
Esercizi sulle Leggi dei Gas
Introduzione
Le leggi dei gas descrivono il comportamento dei gas in relazione a pressione, volume e temperatura. Le leggi principali includono la legge di Boyle, la legge di Charles e la legge di Avogadro.
Esercizio 1: Legge di Boyle
Domanda: Un gas occupa un volume di 5 L a una pressione di 2 atm. Quale sarà il volume del gas se la pressione aumenta a 4 atm, mantenendo la temperatura costante?
Formula:
P_1 V_1 = P_2 V_2
P1​V1​=P2​V2​
Dati:
- P_1 = 2 \, \text{atm}P1​=2atm
- V_1 = 5 \, \text{L}V1​=5L
- P_2 = 4 \, \text{atm}P2​=4atm
Risposta:
2 \, \text{atm} \times 5 \, \text{L} = 4 \, \text{atm} \times V_2
2atm×5L=4atm×V2​
10 = 4 V_2 \implies V_2 = \frac{10}{4} = 2.5 \, \text{L}
10=4V2​⟹V2​=410​=2.5L
Esercizio 2: Legge di Charles
Domanda: Un gas occupa un volume di 10 L a 20 °C. Quale sarà il volume del gas se la temperatura aumenta a 60 °C, mantenendo la pressione costante?
Formula:
\frac{V_1}{T_1} = \frac{V_2}{T_2}
T1​V1​​=T2​V2​​
Dati:
- V_1 = 10 \, \text{L}V1​=10L
- T_1 = 20 \, \text{°C} = 293 \, \text{K}T1​=20°C=293K (convertito in Kelvin)
- T_2 = 60 \, \text{°C} = 333 \, \text{K}T2​=60°C=333K
Risposta:
\frac{10 \, \text{L}}{293 \, \text{K}} = \frac{V_2}{333 \, \text{K}}
293K10L​=333KV2​​
V_2 = \frac{10 \, \text{L} \times 333 \, \text{K}}{293 \, \text{K}} \approx 11.37 \, \text{L}
V2​=293K10L×333K​≈11.37L
Esercizio 3: Legge di Avogadro
Domanda: Qual è il volume occupato da 2 mol di un gas ideale a 0 °C e 1 atm di pressione?
Formula:
V = n \times V_m
V=n×Vm​
dove V_mVm​ è il volume molare di un gas ideale a condizioni standard (0 °C e 1 atm), che è circa 22.4 L/mol.
Dati:
- n = 2 \, \text{mol}n=2mol
- V_m = 22.4 \, \text{L/mol}Vm​=22.4L/mol
Risposta:
V = 2 \, \text{mol} \times 22.4 \, \text{L/mol} = 44.8 \, \text{L}
V=2mol×22.4L/mol=44.8L
Esercizio 4: Equazione dei gas ideali
Domanda: Un gas ideale ha una pressione di 3 atm, un volume di 10 L e una temperatura di 300 K. Quanti moli di gas ci sono?
Formula:
PV = nRT
PV=nRT
dove R = 0.0821 \, \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})R=0.0821L⋅atm/(K⋅mol)
Dati:
- P = 3 \, \text{atm}P=3atm
- V = 10 \, \text{L}V=10L
- T = 300 \, \text{K}T=300K
Risposta:
n = \frac{PV}{RT} = \frac{3 \, \text{atm} \times 10 \, \text{L}}{0.0821 \, \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol}) \times 300 \, \text{K}}
n=RTPV​=0.0821L⋅atm/(K⋅mol)×300K3atm×10L​
n \approx \frac{30}{24.63} \approx 1.22 \, \text{mol}
n≈24.6330​≈1.22mol
English version
Gas Laws Exercises
Introduction
Gas laws describe the behavior of gases with respect to pressure, volume, and temperature. The main laws include Boyle's Law, Charles's Law, and Avogadro's Law.
Exercise 1: Boyle's Law
Question: A gas occupies a volume of 5 L at a pressure of 2 atm. What will be the volume of the gas if the pressure is increased to 4 atm, keeping the temperature constant?
Formula:
P_1 V_1 = P_2 V_2
P1​V1​=P2​V2​
Data:
- P_1 = 2 \, \text{atm}P1​=2atm
- V_1 = 5 \, \text{L}V1​=5L
- P_2 = 4 \, \text{atm}P2​=4atm
Answer:
2 \, \text{atm} \times 5 \, \text{L} = 4 \, \text{atm} \times V_2
2atm×5L=4atm×V2​
10 = 4 V_2 \implies V_2 = \frac{10}{4} = 2.5 \, \text{L}
10=4V2​⟹V2​=410​=2.5L
Exercise 2: Charles's Law
Question: A gas occupies a volume of 10 L at 20 °C. What will be the volume of the gas if the temperature increases to 60 °C, keeping the pressure constant?
Formula:
\frac{V_1}{T_1} = \frac{V_2}{T_2}
T1​V1​​=T2​V2​​
Data:
- V_1 = 10 \, \text{L}V1​=10L - T_1 = 20 \, \text{C°} = 293 \, \text{K}T1​=20C°=293K (converted to Kelvin)
- T_2 = 60 \, \text{°C} = 333 \,T2​=60°C=333
Answer:
\frac{10 \, \text{L}}{293 \, \text{K}} = \frac{V_2}{333 \, \text{K}}
293K10L​=333KV2​​
V_2 = \frac{10 \, \text{L} \times 333 \, \text{K}}{293 \, \text{K}} \approx 11.37 \, \text{L}
V2​=293K10L×333K​≈11.37L
Exercise 3: Avogadro's Law
Question: What is the volume occupied by 2 mol of an ideal gas at 0 °C and 1 atm of pressure?
Formula:
V = n \times V_m
V=n×Vm​
where V_mVm​ is the molar volume of an ideal gas at standard conditions (0 °C and 1 atm), which is about 22.4 L/mol.
Data:
- n = 2 \, \text{mol}n=2mol
- V_m = 22.4 \, \text{L/mol}Vm​=22.4L/mol
Answer:
V = 2 \, \text{mol} \times 22.4 \, \text{L/mol} = 44.8 \, \text{L}
V=2mol×22.4L/mol=44.8L
Exercise 4: Ideal Gas Equation
Question: An ideal gas has a pressure of 3 atm, a volume of 10 L, and a temperature of 300 K. How many moles of gas are there?
Formula:
PV = nRT
PV=nRT
where
R = 0.0821 \, \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})R=0.0821L⋅atm/(K⋅mol)
Data:
P = 3 \, \text{atm}P=3atm - V = 10 \, \text{L}V=10L - T = 300 \, \text{K}T=300K Answer:
n = \frac {PV}{RT} = \frac{3 \, \text{atm} \times 10 \, \text{L}}{0.0821 \, \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol}) \times 300 \, \text{K}}
n=RTPV​=0.0821L⋅atm/(K⋅mol)×300K3atm×10L​
n \approx \frac{30}{24.63} \approx 1.22 \, \text{mol}
n≈24.6330​≈1.22mol
Commenti
Posta un commento