Versione italiana
Concetti Principali
Deformazione Normale (\epsilon ϵ \epsilon ϵ ) :
La deformazione normale è la variazione di lunghezza per unità di lunghezza originale in direzione della forza applicata. Può essere positiva (allungamento) o negativa (compressione).
Deformazione di Taglio (\gamma γ \gamma γ ) :
La deformazione di taglio è la variazione di angolo tra due linee originariamente perpendicolari a causa di forze tangenziali.
Tensore delle Deformazioni :
Il tensore delle deformazioni è una matrice che rappresenta le deformazioni in un materiale in tre dimensioni. Per un materiale isotropo, il tensore delle deformazioni è dato da:
\mathbf{E} = \begin{bmatrix}
\epsilon_x & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{zx} \\
\frac{1}{2} \gamma_{xy} & \epsilon_y & \frac{1}{2} \gamma_{yz} \\
\frac{1}{2} \gamma_{zx} & \frac{1}{2} \gamma_{yz} & \epsilon_z
\end{bmatrix} E = [ ϵ x 1 2 γ x y 1 2 γ z x 1 2 γ x y ϵ y 1 2 γ y z 1 2 γ z x 1 2 γ y z ϵ z ] \mathbf{E} = \begin{bmatrix}
\epsilon_x & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{zx} \\
\frac{1}{2} \gamma_{xy} & \epsilon_y & \frac{1}{2} \gamma_{yz} \\
\frac{1}{2} \gamma_{zx} & \frac{1}{2} \gamma_{yz} & \epsilon_z
\end{bmatrix} E = ​ ϵ x ​ 2 1 ​ γ x y ​ 2 1 ​ γ z x ​ ​ 2 1 ​ γ x y ​ ϵ y ​ 2 1 ​ γ yz ​ ​ 2 1 ​ γ z x ​ 2 1 ​ γ yz ​ ϵ z ​ ​ ​
Invarianti di Deformazione :
Gli invarianti di deformazione sono quantità scalari che forniscono informazioni sullo stato di deformazione del materiale. Gli invarianti di deformazione possono essere calcolati a partire dal tensore delle deformazioni.
Primo Invariante (J_1 J 1 J_1 J 1 ​ ) :
J_1 = \epsilon_x + \epsilon_y + \epsilon_z J 1 = ϵ x + ϵ y + ϵ z J_1 = \epsilon_x + \epsilon_y + \epsilon_z J 1 ​ = ϵ x ​ + ϵ y ​ + ϵ z ​
Questo rappresenta la somma delle deformazioni normali.
Secondo Invariante (J_2 J 2 J_2 J 2 ​ ) :
J_2 = \frac{1}{2} \left( \epsilon_x^2 + \epsilon_y^2 + \epsilon_z^2 \right) + \frac{1}{4} \left( \gamma_{xy}^2 + \gamma_{yz}^2 + \gamma_{zx}^2 \right) - \frac{1}{2} \left( \epsilon_x \epsilon_y + \epsilon_y \epsilon_z + \epsilon_z \epsilon_x \right) J 2 = 1 2 ( ϵ x 2 + ϵ y 2 + ϵ z 2 ) + 1 4 ( γ x y 2 + γ y z 2 + γ z x 2 ) − 1 2 ( ϵ x ϵ y + ϵ y ϵ z + ϵ z ϵ x ) J_2 = \frac{1}{2} \left( \epsilon_x^2 + \epsilon_y^2 + \epsilon_z^2 \right) + \frac{1}{4} \left( \gamma_{xy}^2 + \gamma_{yz}^2 + \gamma_{zx}^2 \right) - \frac{1}{2} \left( \epsilon_x \epsilon_y + \epsilon_y \epsilon_z + \epsilon_z \epsilon_x \right) J 2 ​ = 2 1 ​ ( ϵ x 2 ​ + ϵ y 2 ​ + ϵ z 2 ​ ) + 4 1 ​ ( γ x y 2 ​ + γ yz 2 ​ + γ z x 2 ​ ) − 2 1 ​ ( ϵ x ​ ϵ y ​ + ϵ y ​ ϵ z ​ + ϵ z ​ ϵ x ​ )
Terzo Invariante (J_3 J 3 J_3 J 3 ​ ) :
J_3 = \text{det}(\mathbf{E}) J 3 = det ( E ) J_3 = \text{det}(\mathbf{E}) J 3 ​ = det ( E )
Questo rappresenta il determinante del tensore delle deformazioni.
Stato Piano :
Per essere considerato piano, J_3 J 3 J_3 J 3 ​ deve essere zero.
Stato Puramente Tangenziale :
Per essere considerato puramente tangenziale, J_1 J 1 J_1 J 1 ​ deve essere zero e J_2 J 2 J_2 J 2 ​ deve essere positivo.
Stato Monoassiale :
Per essere considerato monoassiale, ci deve essere una sola deformazione normale significativa e le altre devono essere nulle o trascurabili.
Supponiamo di avere un materiale sottoposto a deformazioni normali e di taglio con i seguenti valori:
\epsilon_x = 0.01 ϵ x = 0.01 \epsilon_x = 0.01 ϵ x ​ = 0.01 (1% di allungamento)
\epsilon_y = 0.005 ϵ y = 0.005 \epsilon_y = 0.005 ϵ y ​ = 0.005 (0.5% di allungamento)
\epsilon_z = 0.002 ϵ z = 0.002 \epsilon_z = 0.002 ϵ z ​ = 0.002 (0.2% di allungamento)
\gamma_{xy} = 0.004 γ x y = 0.004 \gamma_{xy} = 0.004 γ x y ​ = 0.004 (deformazione di taglio)
\mathbf{E} = \begin{bmatrix}
0.01 & 0.002 & 0.002 \\
0.002 & 0.005 & 0.002 \\
0.002 & 0.002 & 0.002
\end{bmatrix} E = [ 0.01 0.002 0.002 0.002 0.005 0.002 0.002 0.002 0.002 ] \mathbf{E} = \begin{bmatrix}
0.01 & 0.002 & 0.002 \\
0.002 & 0.005 & 0.002 \\
0.002 & 0.002 & 0.002
\end{bmatrix} E = ​ 0.01 0.002 0.002 ​ 0.002 0.005 0.002 ​ 0.002 0.002 0.002 ​ ​
Primo Invariante (J_1 J 1 J_1 J 1 ​ ) :
J_1 = 0.01 + 0.005 + 0.002 = 0.017 J 1 = 0.01 + 0.005 + 0.002 = 0.017 J_1 = 0.01 + 0.005 + 0.002 = 0.017 J 1 ​ = 0.01 + 0.005 + 0.002 = 0.017
Secondo Invariante (J_2 J 2 J_2 J 2 ​ ) :
\epsilon_x = 0.01 ϵ x = 0.01 \epsilon_x = 0.01 ϵ x ​ = 0.01
\epsilon_y = 0.005 ϵ y = 0.005 \epsilon_y = 0.005 ϵ y ​ = 0.005
\epsilon_z = 0.002 ϵ z = 0.002 \epsilon_z = 0.002 ϵ z ​ = 0.002
\gamma_{xy} = 0.004 γ x y = 0.004 \gamma_{xy} = 0.004 γ x y ​ = 0.004
Ora calcoliamo J_2 J 2 J_2 J 2 ​ :
J_2 = \frac{1}{2} \left( \epsilon_x^2 + \epsilon_y^2 + \epsilon_z^2 \right) + \frac{1}{4} \left( \gamma_{xy}^2 + \gamma_{yz}^2 + \gamma_{zx}^2 \right) - \frac{1}{2} \left( \epsilon_x \epsilon_y + \epsilon_y \epsilon_z + \epsilon_z \epsilon_x \right) J 2 = 1 2 ( ϵ x 2 + ϵ y 2 + ϵ z 2 ) + 1 4 ( γ x y 2 + γ y z 2 + γ z x 2 ) − 1 2 ( ϵ x ϵ y + ϵ y ϵ z + ϵ z ϵ x ) J_2 = \frac{1}{2} \left( \epsilon_x^2 + \epsilon_y^2 + \epsilon_z^2 \right) + \frac{1}{4} \left( \gamma_{xy}^2 + \gamma_{yz}^2 + \gamma_{zx}^2 \right) - \frac{1}{2} \left( \epsilon_x \epsilon_y + \epsilon_y \epsilon_z + \epsilon_z \epsilon_x \right) J 2 ​ = 2 1 ​ ( ϵ x 2 ​ + ϵ y 2 ​ + ϵ z 2 ​ ) + 4 1 ​ ( γ x y 2 ​ + γ yz 2 ​ + γ z x 2 ​ ) − 2 1 ​ ( ϵ x ​ ϵ y ​ + ϵ y ​ ϵ z ​ + ϵ z ​ ϵ x ​ )
Assumiamo che \gamma_{yz} = 0 γ y z = 0 \gamma_{yz} = 0 γ yz ​ = 0 e \gamma_{zx} = 0 γ z x = 0 \gamma_{zx} = 0 γ z x ​ = 0 (se non specificato, possiamo considerare che non ci siano deformazioni di taglio in queste direzioni).
Calcoliamo i singoli termini:
Deformazioni Normali :
\epsilon_x^2 = (0.01)^2 = 0.0001 ϵ x 2 = ( 0.01 ) 2 = 0.0001 \epsilon_x^2 = (0.01)^2 = 0.0001 ϵ x 2 ​ = ( 0.01 ) 2 = 0.0001
\epsilon_y^2 = (0.005)^2 = 0.000025 ϵ y 2 = ( 0.005 ) 2 = 0.000025 \epsilon_y^2 = (0.005)^2 = 0.000025 ϵ y 2 ​ = ( 0.005 ) 2 = 0.000025
\epsilon_z^2 = (0.002)^2 = 0.000004 ϵ z 2 = ( 0.002 ) 2 = 0.000004 \epsilon_z^2 = (0.002)^2 = 0.000004 ϵ z 2 ​ = ( 0.002 ) 2 = 0.000004
Deformazioni di Taglio :
\gamma_{xy}^2 = (0.004)^2 = 0.000016 γ x y 2 = ( 0.004 ) 2 = 0.000016 \gamma_{xy}^2 = (0.004)^2 = 0.000016 γ x y 2 ​ = ( 0.004 ) 2 = 0.000016
\gamma_{yz}^2 = 0 γ y z 2 = 0 \gamma_{yz}^2 = 0 γ yz 2 ​ = 0
\gamma_{zx}^2 = 0 γ z x 2 = 0 \gamma_{zx}^2 = 0 γ z x 2 ​ = 0
Prodotti delle Deformazioni Normali :
\epsilon_x \epsilon_y = 0.01 \cdot 0.005 = 0.00005 ϵ x ϵ y = 0.01 ⋅ 0.005 = 0.00005 \epsilon_x \epsilon_y = 0.01 \cdot 0.005 = 0.00005 ϵ x ​ ϵ y ​ = 0.01 ⋅ 0.005 = 0.00005
\epsilon_y \epsilon_z = 0.005 \cdot 0.002 = 0.00001 ϵ y ϵ z = 0.005 ⋅ 0.002 = 0.00001 \epsilon_y \epsilon_z = 0.005 \cdot 0.002 = 0.00001 ϵ y ​ ϵ z ​ = 0.005 ⋅ 0.002 = 0.00001
\epsilon_z \epsilon_x = 0.002 \cdot 0.01 = 0.00002 ϵ z ϵ x = 0.002 ⋅ 0.01 = 0.00002 \epsilon_z \epsilon_x = 0.002 \cdot 0.01 = 0.00002 ϵ z ​ ϵ x ​ = 0.002 ⋅ 0.01 = 0.00002
Ora possiamo sostituire i valori nel calcolo di J_2 J 2 J_2 J 2 ​ :
J_2 = \frac{1}{2} \left( 0.0001 + 0.000025 + 0.000004 \right) + \frac{1}{4} \left( 0.000016 \right) - \frac{1}{2} \left( 0.00005 + 0.00001 + 0.00002 \right) J 2 = 1 2 ( 0.0001 + 0.000025 + 0.000004 ) + 1 4 ( 0.000016 ) − 1 2 ( 0.00005 + 0.00001 + 0.00002 ) J_2 = \frac{1}{2} \left( 0.0001 + 0.000025 + 0.000004 \right) + \frac{1}{4} \left( 0.000016 \right) - \frac{1}{2} \left( 0.00005 + 0.00001 + 0.00002 \right) J 2 ​ = 2 1 ​ ( 0.0001 + 0.000025 + 0.000004 ) + 4 1 ​ ( 0.000016 ) − 2 1 ​ ( 0.00005 + 0.00001 + 0.00002 )
Calcoliamo i singoli termini:
Ora sommiamo tutto:
J_2 = 0.0000645 + 0.000004 - 0.00004 = 0.0000285 J 2 = 0.0000645 + 0.000004 − 0.00004 = 0.0000285 J_2 = 0.0000645 + 0.000004 - 0.00004 = 0.0000285 J 2 ​ = 0.0000645 + 0.000004 − 0.00004 = 0.0000285
Terzo invariante
Il tensore delle deformazioni è dato da:
\mathbf{E} = \begin{bmatrix}
\epsilon_x & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{zx} \\
\frac{1}{2} \gamma_{xy} & \epsilon_y & \frac{1}{2} \gamma_{yz} \\
\frac{1}{2} \gamma_{zx} & \frac{1}{2} \gamma_{yz} & \epsilon_z
\end{bmatrix} E = [ ϵ x 1 2 γ x y 1 2 γ z x 1 2 γ x y ϵ y 1 2 γ y z 1 2 γ z x 1 2 γ y z ϵ z ] \mathbf{E} = \begin{bmatrix}
\epsilon_x & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{zx} \\
\frac{1}{2} \gamma_{xy} & \epsilon_y & \frac{1}{2} \gamma_{yz} \\
\frac{1}{2} \gamma_{zx} & \frac{1}{2} \gamma_{yz} & \epsilon_z
\end{bmatrix} E = ​ ϵ x ​ 2 1 ​ γ x y ​ 2 1 ​ γ z x ​ ​ 2 1 ​ γ x y ​ ϵ y ​ 2 1 ​ γ yz ​ ​ 2 1 ​ γ z x ​ 2 1 ​ γ yz ​ ϵ z ​ ​ ​
Sostituendo i valori:
\mathbf{E} = \begin{bmatrix}
0.01 & 0.002 & 0 \\
0.002 & 0.005 & 0 \\
0 & 0 & 0.002
\end{bmatrix} E = [ 0.01 0.002 0 0.002 0.005 0 0 0 0.002 ] \mathbf{E} = \begin{bmatrix}
0.01 & 0.002 & 0 \\
0.002 & 0.005 & 0 \\
0 & 0 & 0.002
\end{bmatrix} E = ​ 0.01 0.002 0 ​ 0.002 0.005 0 ​ 0 0 0.002 ​ ​
Per calcolare il determinante di questa matrice 3 \times 3 3 × 3 3 \times 3 3 × 3 , possiamo usare la formula:
\text{det}(\mathbf{E}) = \epsilon_x \left( \epsilon_y \epsilon_z - \left(\frac{1}{2} \gamma_{yz}\right)^2 \right) - \frac{1}{2} \gamma_{xy} \left( \frac{1}{2} \gamma_{xy} \epsilon_z - \frac{1}{2} \gamma_{yz} \cdot 0 \right) + 0 det ( E ) = ϵ x ( ϵ y ϵ z − ( 1 2 γ y z ) 2 ) − 1 2 γ x y ( 1 2 γ x y ϵ z − 1 2 γ y z ⋅ 0 ) + 0 \text{det}(\mathbf{E}) = \epsilon_x \left( \epsilon_y \epsilon_z - \left(\frac{1}{2} \gamma_{yz}\right)^2 \right) - \frac{1}{2} \gamma_{xy} \left( \frac{1}{2} \gamma_{xy} \epsilon_z - \frac{1}{2} \gamma_{yz} \cdot 0 \right) + 0 det ( E ) = ϵ x ​ ( ϵ y ​ ϵ z ​ − ( 2 1 ​ γ yz ​ ) 2 ) − 2 1 ​ γ x y ​ ( 2 1 ​ γ x y ​ ϵ z ​ − 2 1 ​ γ yz ​ ⋅ 0 ) + 0
Sostituendo i valori:
Primo termine :
\epsilon_x \left( \epsilon_y \epsilon_z - \left(\frac{1}{2} \gamma_{yz}\right)^2 \right) = 0.01 \left( 0.005 \cdot 0.002 - 0 \right) = 0.01 \cdot 0.00001 = 0.0000001 ϵ x ( ϵ y ϵ z − ( 1 2 γ y z ) 2 ) = 0.01 ( 0.005 ⋅ 0.002 − 0 ) = 0.01 ⋅ 0.00001 = 0.0000001 \epsilon_x \left( \epsilon_y \epsilon_z - \left(\frac{1}{2} \gamma_{yz}\right)^2 \right) = 0.01 \left( 0.005 \cdot 0.002 - 0 \right) = 0.01 \cdot 0.00001 = 0.0000001 ϵ x ​ ( ϵ y ​ ϵ z ​ − ( 2 1 ​ γ yz ​ ) 2 ) = 0.01 ( 0.005 ⋅ 0.002 − 0 ) = 0.01 ⋅ 0.00001 = 0.0000001
Secondo termine :
-\frac{1}{2} \gamma_{xy} \left( \frac{1}{2} \gamma_{xy} \epsilon_z \right) = -\frac{1}{2} \cdot 0.004 \cdot \left( \frac{1}{2} \cdot 0.004 \cdot 0.002 \right) = -\frac{1}{2} \cdot 0.004 \cdot 0.000004 = -0.000000008 − 1 2 γ x y ( 1 2 γ x y ϵ z ) = − 1 2 ⋅ 0.004 ⋅ ( 1 2 ⋅ 0.004 ⋅ 0.002 ) = − 1 2 ⋅ 0.004 ⋅ 0.000004 = − 0.000000008 -\frac{1}{2} \gamma_{xy} \left( \frac{1}{2} \gamma_{xy} \epsilon_z \right) = -\frac{1}{2} \cdot 0.004 \cdot \left( \frac{1}{2} \cdot 0.004 \cdot 0.002 \right) = -\frac{1}{2} \cdot 0.004 \cdot 0.000004 = -0.000000008 − 2 1 ​ γ x y ​ ( 2 1 ​ γ x y ​ ϵ z ​ ) = − 2 1 ​ ⋅ 0.004 ⋅ ( 2 1 ​ ⋅ 0.004 ⋅ 0.002 ) = − 2 1 ​ ⋅ 0.004 ⋅ 0.000004 = − 0.000000008
Terzo termine : Non contribuisce poiché \gamma_{yz} = 0 γ y z = 0 \gamma_{yz} = 0 γ yz ​ = 0 .
Ora sommiamo i risultati:
J_3 = 0.0000001 - 0.000000008 = 0.000000092 J 3 = 0.0000001 − 0.000000008 = 0.000000092 J_3 = 0.0000001 - 0.000000008 = 0.000000092 J 3 ​ = 0.0000001 − 0.000000008 = 0.000000092
Ora che abbiamo calcolato gli invarianti di deformazione:
J_1 = 0.017 J 1 = 0.017 J_1 = 0.017 J 1 ​ = 0.017
J_2 = 0.0000285 J 2 = 0.0000285 J_2 = 0.0000285 J 2 ​ = 0.0000285
J_3 = 0.000000092 J 3 = 0.000000092 J_3 = 0.000000092 J 3 ​ = 0.000000092
Possiamo classificare lo stato di deformazione:
Stato Piano :
Per essere considerato piano, J_3 J 3 J_3 J 3 ​ dovrebbe essere zero. In questo caso, J_3 J 3 J_3 J 3 ​ è positivo, quindi non possiamo classificare lo stato come piano.
Stato Puramente Tangenziale :
Per essere considerato puramente tangenziale, J_1 J 1 J_1 J 1 ​ dovrebbe essere zero e J_2 J 2 J_2 J 2 ​ dovrebbe essere positivo. Qui, J_1 J 1 J_1 J 1 ​ è positivo, quindi non possiamo classificare lo stato come puramente tangenziale.
Stato Monoassiale :
Per essere considerato monoassiale, ci dovrebbe essere una sola deformazione normale significativa e le altre dovrebbero essere nulle o trascurabili. In questo caso, abbiamo tre deformazioni normali non nulle, quindi non possiamo classificare lo stato come monoassiale.
English version
Strain Analysis Exercises
Key Concepts
Normal Strain (\epsilon ϵ \epsilon ϵ ) :
Normal strain is the change in length per unit of original length in the direction of the applied force. It can be positive (elongation) or negative (compression).
Shear Strain (\gamma γ \gamma γ ) :
Shear strain is the change in angle between two originally perpendicular lines due to tangential forces.
Strain Tensor :
The strain tensor is a matrix that represents the deformations in a material in three dimensions. For an isotropic material, the strain tensor is given by:
\mathbf{E} = \begin{bmatrix}
\epsilon_x & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{zx} \\
\frac{1}{2} \gamma_{xy} & \epsilon_y & \frac{1}{2} \gamma_{yz} & \epsilon_z
\end{bmatrix} E = [ ϵ x 1 2 γ x y 1 2 γ z x 1 2 γ x y ϵ y 1 2 γ y z ϵ z ] \mathbf{E} = \begin{bmatrix}
\epsilon_x & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{zx} \\
\frac{1}{2} \gamma_{xy} & \epsilon_y & \frac{1}{2} \gamma_{yz} & \epsilon_z
\end{bmatrix} E = [ ϵ x ​ 2 1 ​ γ x y ​ ​ 2 1 ​ γ x y ​ ϵ y ​ ​ 2 1 ​ γ z x ​ 2 1 ​ γ yz ​ ​ ϵ z ​ ​ ]
Deformation Invariants :
Deformation invariants are scalar quantities that provide information about the state of deformation of the material. Deformation invariants can be calculated from the strain tensor.
First Invariant (J_1 J 1 J_1 J 1 ​ ) :
J_1 = \epsilon_x + \epsilon_y + \epsilon_z J 1 = ϵ x + ϵ y + ϵ z J_1 = \epsilon_x + \epsilon_y + \epsilon_z J 1 ​ = ϵ x ​ + ϵ y ​ + ϵ z ​
This represents the sum of the normal deformations.
Second Invariant (J_2 J 2 J_2 J 2 ​ ) :
J_2 = \frac{1}{2} \left( \epsilon_x^2 + \epsilon_y^2 + \epsilon_z^2 \right) + \frac{1}{4} \left( \gamma_{xy}^2 + \gamma_{yz}^2 + \gamma_{zx}^2 \right) - \frac{1}{2} \left( x \epsilon_y + \epsilon_y \epsilon_z + \epsilon_z \epsilon_x \right) J 2 = 1 2 ( ϵ x 2 + ϵ y 2 + ϵ z 2 ) + 1 4 ( γ x y 2 + γ y z 2 + γ z x 2 ) − 1 2 ( x ϵ y + ϵ y ϵ z + ϵ z ϵ x ) J_2 = \frac{1}{2} \left( \epsilon_x^2 + \epsilon_y^2 + \epsilon_z^2 \right) + \frac{1}{4} \left( \gamma_{xy}^2 + \gamma_{yz}^2 + \gamma_{zx}^2 \right) - \frac{1}{2} \left( x \epsilon_y + \epsilon_y \epsilon_z + \epsilon_z \epsilon_x \right) J 2 ​ = 2 1 ​ ( ϵ x 2 ​ + ϵ y 2 ​ + ϵ z 2 ​ ) + 4 1 ​ ( γ x y 2 ​ + γ yz 2 ​ + γ z x 2 ​ ) − 2 1 ​ ( x ϵ y ​ + ϵ y ​ ϵ z ​ + ϵ z ​ ϵ x ​ )
Third Invariant (J_3 J 3 J_3 J 3 ​ ) :
J_3 = \text{det}(\mathbf{E}) J 3 = det ( E ) J_3 = \text{det}(\mathbf{E}) J 3 ​ = det ( E )
This represents the determinant of the strain tensor.
Plane State :
To be considered planar, J_3 J 3 J_3 J 3 ​ must be zero.
Purely Tangential State :
To be considered purely tangential, J_1 J 1 J_1 J 1 ​ must be zero and J_2 J 2 J_2 J 2 ​ must be positive.
Uniaxial State :
To be considered uniaxial, there must be only one significant normal strain and the others must be zero or negligible.
Strain Analysis Example
Suppose we have a material subjected to normal and shear strains with the following values:
\epsilon_x = 0.01 ϵ x = 0.01 \epsilon_x = 0.01 ϵ x ​ = 0.01 (1% elongation)
\epsilon_y = 0.005 ϵ y = 0.005 \epsilon_y = 0.005 ϵ y ​ = 0.005 (0.5% elongation)
\epsilon_z = 0.002 ϵ z = 0.002 \epsilon_z = 0.002 ϵ z ​ = 0.002 (0.2% elongation)
\gamma_{xy} = 0.004 γ x y = 0.004 \gamma_{xy} = 0.004 γ x y ​ = 0.004 (shear strain)
Construction of the Strain Tensor
\mathbf{E} = \begin{bmatrix}
0.01 & 0.002 & 0.002 \\
0.002 & 0.005 & 0.002 \\
0.002 & 0.002 & 0.002
\end{bmatrix} E = [ 0.01 0.002 0.002 0.002 0.005 0.002 0.002 0.002 0.002 ] \mathbf{E} = \begin{bmatrix}
0.01 & 0.002 & 0.002 \\
0.002 & 0.005 & 0.002 \\
0.002 & 0.002 & 0.002
\end{bmatrix} E = ​ 0.01 0.002 0.002 ​ 0.002 0.005 0.002 ​ 0.002 0.002 0.002 ​ ​
First Invariant (J_1 J 1 J_1 J 1 ​ ) :
J_1 = 0.01 + 0.005 + 0.002 = 0.017 J 1 = 0.01 + 0.005 + 0.002 = 0.017 J_1 = 0.01 + 0.005 + 0.002 = 0.017 J 1 ​ = 0.01 + 0.005 + 0.002 = 0.017
Second Invariant (J_2 J 2 J_2 J 2 ​ ) :
\epsilon_x = 0.01 ϵ x = 0.01 \epsilon_x = 0.01 ϵ x ​ = 0.01
\epsilon_y = 0.005 ϵ y = 0.005 \epsilon_y = 0.005 ϵ y ​ = 0.005
\epsilon_z = 0.002 ϵ z = 0.002 \epsilon_z = 0.002 ϵ z ​ = 0.002
\gamma_{xy} = 0.004 γ x y = 0.004 \gamma_{xy} = 0.004 γ x y ​ = 0.004
Now we compute J_2 J 2 J_2 J 2 ​ :
J_2 = \frac{1}{2} \left( \epsilon_x^2 + \epsilon_y^2 + \epsilon_z^2 \right) + \frac{1}{4} \left( \gamma_{xy}^2 + \gamma_{yz}^2 + \gamma_{zx}^2 \right) - \frac{1}{2} \left( \epsilon_x \epsilon_y + \epsilon_y \epsilon_z + \epsilon_z \epsilon_x \right) J 2 = 1 2 ( ϵ x 2 + ϵ y 2 + ϵ z 2 ) + 1 4 ( γ x y 2 + γ y z 2 + γ z x 2 ) − 1 2 ( ϵ x ϵ y + ϵ y ϵ z + ϵ z ϵ x ) J_2 = \frac{1}{2} \left( \epsilon_x^2 + \epsilon_y^2 + \epsilon_z^2 \right) + \frac{1}{4} \left( \gamma_{xy}^2 + \gamma_{yz}^2 + \gamma_{zx}^2 \right) - \frac{1}{2} \left( \epsilon_x \epsilon_y + \epsilon_y \epsilon_z + \epsilon_z \epsilon_x \right) J 2 ​ = 2 1 ​ ( ϵ x 2 ​ + ϵ y 2 ​ + ϵ z 2 ​ ) + 4 1 ​ ( γ x y 2 ​ + γ yz 2 ​ + γ z x 2 ​ ) − 2 1 ​ ( ϵ x ​ ϵ y ​ + ϵ y ​ ϵ z ​ + ϵ z ​ ϵ x ​ )
Assume that \gamma_{yz} = 0 γ y z = 0 \gamma_{yz} = 0 γ yz ​ = 0 and \gamma_{zx} = 0 γ z x = 0 \gamma_{zx} = 0 γ z x ​ = 0 (if not specified, we can assume that there are no shear deformations in these directions).
Let's calculate the individual terms:
Normal Strains :
\epsilon_x^2 = (0.01)^2 = 0.0001 ϵ x 2 = ( 0.01 ) 2 = 0.0001 \epsilon_x^2 = (0.01)^2 = 0.0001 ϵ x 2 ​ = ( 0.01 ) 2 = 0.0001
\epsilon_y^2 = (0.005)^2 = 0.000025 ϵ y 2 = ( 0.005 ) 2 = 0.000025 \epsilon_y^2 = (0.005)^2 = 0.000025 ϵ y 2 ​ = ( 0.005 ) 2 = 0.000025
\epsilon_z^2 = (0.002)^2 = 0.000004 ϵ z 2 = ( 0.002 ) 2 = 0.000004 \epsilon_z^2 = (0.002)^2 = 0.000004 ϵ z 2 ​ = ( 0.002 ) 2 = 0.000004
Shear Strains :
\gamma_{xy}^2 = (0.004)^2 = 0.000016 γ x y 2 = ( 0.004 ) 2 = 0.000016 \gamma_{xy}^2 = (0.004)^2 = 0.000016 γ x y 2 ​ = ( 0.004 ) 2 = 0.000016
\gamma_{yz}^2 = 0 γ y z 2 = 0 \gamma_{yz}^2 = 0 γ yz 2 ​ = 0
\gamma_{zx}^2 = 0 γ z x 2 = 0 \gamma_{zx}^2 = 0 γ z x 2 ​ = 0
Products of Normal Strains :
\epsilon_x \epsilon_y = 0.01 \cdot 0.005 = 0.00005 ϵ x ϵ y = 0.01 ⋅ 0.005 = 0.00005 \epsilon_x \epsilon_y = 0.01 \cdot 0.005 = 0.00005 ϵ x ​ ϵ y ​ = 0.01 ⋅ 0.005 = 0.00005
\epsilon_y \epsilon_z = 0.005 \cdot 0.002 = 0.00001 ϵ y ϵ z = 0.005 ⋅ 0.002 = 0.00001 \epsilon_y \epsilon_z = 0.005 \cdot 0.002 = 0.00001 ϵ y ​ ϵ z ​ = 0.005 ⋅ 0.002 = 0.00001
\epsilon_z \epsilon_x = 0.002 \cdot 0.01 = 0.00002 ϵ z ϵ x = 0.002 ⋅ 0.01 = 0.00002 \epsilon_z \epsilon_x = 0.002 \cdot 0.01 = 0.00002 ϵ z ​ ϵ x ​ = 0.002 ⋅ 0.01 = 0.00002
Now we can substitute the values ​​in the calculation of J_2 J 2 J_2 J 2 ​ :
J_2 = \frac{1}{2} \left( 0.0001 + 0.000025 + 0.000004 \right) + \frac{1}{4} \left( 0.000016 \right) - \frac{1}{2} \left( 0.00005 + 0.00001 + 0.00002 \right) J 2 = 1 2 ( 0.0001 + 0.000025 + 0.000004 ) + 1 4 ( 0.000016 ) − 1 2 ( 0.00005 + 0.00001 + 0.00002 ) J_2 = \frac{1}{2} \left( 0.0001 + 0.000025 + 0.000004 \right) + \frac{1}{4} \left( 0.000016 \right) - \frac{1}{2} \left( 0.00005 + 0.00001 + 0.00002 \right) J 2 ​ = 2 1 ​ ( 0.0001 + 0.000025 + 0.000004 ) + 4 1 ​ ( 0.000016 ) − 2 1 ​ ( 0.00005 + 0.00001 + 0.00002 )
Let's calculate the individual terms:
Sum of normal deformations:
0.0001 + 0.000025 + 0.000004 = 0.000129 0.0001 + 0.000025 + 0.000004 = 0.000129 0.0001 + 0.000025 + 0.000004 = 0.000129 0.0001 + 0.000025 + 0.000004 = 0.000129
\frac{1}{2} \cdot 0.000129 = 0.0000645 1 2 ⋅ 0.000129 = 0.0000645 \frac{1}{2} \cdot 0.000129 = 0.0000645 2 1 ​ ⋅ 0.000129 = 0.0000645
\frac{1}{4} \cdot 0.000016 = 0.000004 1 4 ⋅ 0.000016 = 0.000004 \frac{1}{4} \cdot 0.000016 = 0.000004 4 1 ​ ⋅ 0.000016 = 0.000004
Products of normal deformations:
0.00005 + 0.00001 + 0.00002 = 0.00008 0.00005 + 0.00001 + 0.00002 = 0.00008 0.00005 + 0.00001 + 0.00002 = 0.00008 0.00005 + 0.00001 + 0.00002 = 0.00008
-\frac{1}{2} \cdot 0.00008 = -0.00004 − 1 2 ⋅ 0.00008 = − 0.00004 -\frac{1}{2} \cdot 0.00008 = -0.00004 − 2 1 ​ ⋅ 0.00008 = − 0.00004
Now let's add it all up:
J_2 = 0.0000645 + 0.000004 - 0.00004 = 0.0000285 J 2 = 0.0000645 + 0.000004 − 0.00004 = 0.0000285 J_2 = 0.0000645 + 0.000004 - 0.00004 = 0.0000285 J 2 ​ = 0.0000645 + 0.000004 − 0.00004 = 0.0000285
Third invariant
The deformation tensor is given by:
\mathbf{E} = \begin{bmatrix}
\epsilon_x & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{zx} \\
\frac{1}{2} \gamma_{xy} & \epsilon_y & \frac{1}{2} \gamma_{yz} \\
\frac{1}{2} \gamma_{zx} & \frac{1}{2} \gamma_{yz} & \epsilon_z
\end{bmatrix} E = [ ϵ x 1 2 γ x y 1 2 γ z x 1 2 γ x y ϵ y 1 2 γ y z 1 2 γ z x 1 2 γ y z ϵ z ] \mathbf{E} = \begin{bmatrix}
\epsilon_x & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{zx} \\
\frac{1}{2} \gamma_{xy} & \epsilon_y & \frac{1}{2} \gamma_{yz} \\
\frac{1}{2} \gamma_{zx} & \frac{1}{2} \gamma_{yz} & \epsilon_z
\end{bmatrix} E = ​ ϵ x ​ 2 1 ​ γ x y ​ 2 1 ​ γ z x ​ ​ 2 1 ​ γ x y ​ ϵ y ​ 2 1 ​ γ yz ​ ​ 2 1 ​ γ z x ​ 2 1 ​ γ yz ​ ϵ z ​ ​ ​
Substituting the values:
\mathbf{E} = \begin{bmatrix}
0.01 & 0.002 & 0 \\
0.002 & 0.005 & 0 \\
0 & 0 & 0.002
\end{bmatrix} E = [ 0.01 0.002 0 0.002 0.005 0 0 0 0.002 ] \mathbf{E} = \begin{bmatrix}
0.01 & 0.002 & 0 \\
0.002 & 0.005 & 0 \\
0 & 0 & 0.002
\end{bmatrix} E = ​ 0.01 0.002 0 ​ 0.002 0.005 0 ​ 0 0 0.002 ​ ​
To calculate the determinant of this matrix 3 \times 3 3 × 3 3 \times 3 3 × 3 , we can use the formula:
\text{det}(\mathbf{E}) = \epsilon_x \left( \epsilon_y \epsilon_z - \left(\frac{1}{2} \gamma_{yz}\right)^2 \right) - \frac{1}{2} \gamma_{xy} \left( \frac{1}{2} \gamma_{xy} \epsilon_z - \frac{1}{2} \gamma_{yz} \cdot 0 \right) + 0 det ( E ) = ϵ x ( ϵ y ϵ z − ( 1 2 γ y z ) 2 ) − 1 2 γ x y ( 1 2 γ x y ϵ z − 1 2 γ y z ⋅ 0 ) + 0 \text{det}(\mathbf{E}) = \epsilon_x \left( \epsilon_y \epsilon_z - \left(\frac{1}{2} \gamma_{yz}\right)^2 \right) - \frac{1}{2} \gamma_{xy} \left( \frac{1}{2} \gamma_{xy} \epsilon_z - \frac{1}{2} \gamma_{yz} \cdot 0 \right) + 0 det ( E ) = ϵ x ​ ( ϵ y ​ ϵ z ​ − ( 2 1 ​ γ yz ​ ) 2 ) − 2 1 ​ γ x y ​ ( 2 1 ​ γ x y ​ ϵ z ​ − 2 1 ​ γ yz ​ ⋅ 0 ) + 0
Substituting the values:
First term :
\epsilon_x \left( \epsilon_y \epsilon_z - \left(\frac{1}{2} \gamma_{yz}\right)^2 \right) = 0.01 \left( 0.005 \cdot 0.002 - 0 \right) = 0.01 \cdot 0.00001 = 0.0000001 ϵ x ( ϵ y ϵ z − ( 1 2 γ y z ) 2 ) = 0.01 ( 0.005 ⋅ 0.002 − 0 ) = 0.01 ⋅ 0.00001 = 0.0000001 \epsilon_x \left( \epsilon_y \epsilon_z - \left(\frac{1}{2} \gamma_{yz}\right)^2 \right) = 0.01 \left( 0.005 \cdot 0.002 - 0 \right) = 0.01 \cdot 0.00001 = 0.0000001 ϵ x ​ ( ϵ y ​ ϵ z ​ − ( 2 1 ​ γ yz ​ ) 2 ) = 0.01 ( 0.005 ⋅ 0.002 − 0 ) = 0.01 ⋅ 0.00001 = 0.0000001
Second term :
-\frac{1}{2} \gamma_{xy} \left({2} \gamma_{xy} \epsilon_z \right) = -\frac{1}{2} \cdot 0.004 \cdot \left( \frac{1}{2} \cdot 0.004 \cdot 0.002 \right) = -\frac{1}{2} \cdot 0.004 \cdot 0.000004 = -0.000000008 − 1 2 γ x y ( 2 γ x y ϵ z ) = − 1 2 ⋅ 0.004 ⋅ ( 1 2 ⋅ 0.004 ⋅ 0.002 ) = − 1 2 ⋅ 0.004 ⋅ 0.000004 = − 0.000000008 -\frac{1}{2} \gamma_{xy} \left({2} \gamma_{xy} \epsilon_z \right) = -\frac{1}{2} \cdot 0.004 \cdot \left( \frac{1}{2} \cdot 0.004 \cdot 0.002 \right) = -\frac{1}{2} \cdot 0.004 \cdot 0.000004 = -0.000000008 − 2 1 ​ γ x y ​ ( 2 γ x y ​ ϵ z ​ ) = − 2 1 ​ ⋅ 0.004 ⋅ ( 2 1 ​ ⋅ 0.004 ⋅ 0.002 ) = − 2 1 ​ ⋅ 0.004 ⋅ 0.000004 = − 0.000000008
Third term : Does not contribute since \gamma_{yz} = 0 γ y z = 0 \gamma_{yz} = 0 γ yz ​ = 0 .
Now we add the results:
J_3 = 0.0000001 - 0.000000008 = 0.000000092 J 3 = 0.0000001 − 0.000000008 = 0.000000092 J_3 = 0.0000001 - 0.000000008 = 0.000000092 J 3 ​ = 0.0000001 − 0.000000008 = 0.000000092
Now that we have calculated the deformation invariants:
J_1 = 0.017 J 1 = 0.017 J_1 = 0.017 J 1 ​ = 0.017
J_2 = 0.0000285 J 2 = 0.0000285 J_2 = 0.0000285 J 2 ​ = 0.0000285
J_3 = 0.000000092 J 3 = 0.000000092 J_3 = 0.000000092 J 3 ​ = 0.000000092
We can classify the deformation state:
Flat State :
To be considered flat, J_3 J 3 J_3 J 3 ​ should be zero. In this case, J_3 J 3 J_3 J 3 ​ is positive, so we cannot classify the state as flat.
Purely Tangential State :
To be considered purely tangential, J_1 J 1 J_1 J 1 ​ should be zero and J_2 J 2 J_2 J 2 ​ should be positive. Here, J_1 J 1 J_1 J 1 ​ is positive, so we cannot classify the state as purely tangential.
Uniaxial State :
To be considered uniaxial, there should be only one significant normal strain and the others should be zero or negligible. In this case, we have three non-zero normal strains, so we cannot classify the state as uniaxial.
Commenti
Posta un commento