Versione italiana
Esercizi sulla Costante di Equilibrio
Introduzione
La costante di equilibrio (K K K K ) è un valore che esprime il rapporto tra le concentrazioni dei prodotti e dei reagenti di una reazione chimica all'equilibrio. Per una reazione generica:
aA + bB \rightleftharpoons cC + dD a A + b B ⇌ c C + d D aA + bB \rightleftharpoons cC + dD a A + b B ⇌ c C + d D
La costante di equilibrio è data da:
K = \frac{[C]^c [D]^d}{[A]^a [B]^b} K = [ C ] c [ D ] d [ A ] a [ B ] b K = \frac{[C]^c [D]^d}{[A]^a [B]^b} K = [ A ] a [ B ] b [ C ] c [ D ] d ​
dove:
[C] [ C ] [C] [ C ] , [D] [ D ] [D] [ D ] , [A] [ A ] [A] [ A ] , [B] [ B ] [B] [ B ] sono le concentrazioni molari dei reagenti e dei prodotti.
a a a a , b b b b , c c c c , d d d d sono i coefficienti stechiometrici.
Esercizio 1: Calcolo della Costante di Equilibrio
Domanda: Considera la seguente reazione all'equilibrio:
\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) N 2 ( g ) + 3 H 2 ( g ) ⇌ 2 NH 3 ( g ) \text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) N 2 ​ ( g ) + 3 H 2 ​ ( g ) ⇌ 2 NH 3 ​ ( g )
Se all'equilibrio le concentrazioni sono:
[\text{N}_2] = 0.5 \, \text{M} [ N 2 ] = 0.5   M [\text{N}_2] = 0.5 \, \text{M} [ N 2 ​ ] = 0.5 M
[\text{H}_2] = 0.2 \, \text{M} [ H 2 ] = 0.2   M [\text{H}_2] = 0.2 \, \text{M} [ H 2 ​ ] = 0.2 M
[\text{NH}_3] = 0.8 \, \text{M} [ NH 3 ] = 0.8   M [\text{NH}_3] = 0.8 \, \text{M} [ NH 3 ​ ] = 0.8 M
Calcola la costante di equilibrio K K K K .
Risposta:
Scrivi l'espressione per K K K K :
K = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} K = [ NH 3 ] 2 [ N 2 ] [ H 2 ] 3 K = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} K = [ N 2 ​ ] [ H 2 ​ ] 3 [ NH 3 ​ ] 2 ​
Sostituisci i valori:
K = \frac{(0.8)^2}{(0.5)(0.2)^3} K = ( 0.8 ) 2 ( 0.5 ) ( 0.2 ) 3 K = \frac{(0.8)^2}{(0.5)(0.2)^3} K = ( 0.5 ) ( 0.2 ) 3 ( 0.8 ) 2 ​
K = \frac{0.64}{0.5 \times 0.008} = \frac{0.64}{0.004} = 160 K = 0.64 0.5 × 0.008 = 0.64 0.004 = 160 K = \frac{0.64}{0.5 \times 0.008} = \frac{0.64}{0.004} = 160 K = 0.5 × 0.008 0.64 ​ = 0.004 0.64 ​ = 160
Esercizio 2: Determinazione delle Concentrazioni all'Equilibrio
Domanda: In una reazione di equilibrio:
\text{A}(g) + \text{B}(g) \rightleftharpoons \text{C}(g) A ( g ) + B ( g ) ⇌ C ( g ) \text{A}(g) + \text{B}(g) \rightleftharpoons \text{C}(g) A ( g ) + B ( g ) ⇌ C ( g )
La costante di equilibrio K K K K è 4. Se inizialmente hai 1 M di \text{A} A \text{A} A e 1 M di \text{B} B \text{B} B , quali saranno le concentrazioni all'equilibrio?
Risposta:
Imposta le concentrazioni iniziali:
[\text{A}]_0 = 1 \, \text{M} [ A ] 0 = 1   M [\text{A}]_0 = 1 \, \text{M} [ A ] 0 ​ = 1 M
[\text{B}]_0 = 1 \, \text{M} [ B ] 0 = 1   M [\text{B}]_0 = 1 \, \text{M} [ B ] 0 ​ = 1 M
[\text{C}]_0 = 0 \, \text{M} [ C ] 0 = 0   M [\text{C}]_0 = 0 \, \text{M} [ C ] 0 ​ = 0 M
Definisci le variazioni:
Sia x x x x la quantità di \text{A} A \text{A} A e \text{B} B \text{B} B che reagiscono.
All'equilibrio:
[\text{A}] = 1 - x [ A ] = 1 − x [\text{A}] = 1 - x [ A ] = 1 − x
[\text{B}] = 1 - x [ B ] = 1 − x [\text{B}] = 1 - x [ B ] = 1 − x
[\text{C}] = x [ C ] = x [\text{C}] = x [ C ] = x
Scrivi l'espressione per K K K K :
K = \frac{[\text{C}]}{[\text{A}][\text{B}]} = 4 K = [ C ] [ A ] [ B ] = 4 K = \frac{[\text{C}]}{[\text{A}][\text{B}]} = 4 K = [ A ] [ B ] [ C ] ​ = 4
4 = \frac{x}{(1 - x)(1 - x)} 4 = x ( 1 − x ) ( 1 − x ) 4 = \frac{x}{(1 - x)(1 - x)} 4 = ( 1 − x ) ( 1 − x ) x ​
Risolvi l'equazione:
4(1 - x)^2 = x 4 ( 1 − x ) 2 = x 4(1 - x)^2 = x 4 ( 1 − x ) 2 = x
4(1 - 2x + x^2) = x 4 ( 1 − 2 x + x 2 ) = x 4(1 - 2x + x^2) = x 4 ( 1 − 2 x + x 2 ) = x
4 - 8x + 4x^2 = x 4 − 8 x + 4 x 2 = x 4 - 8x + 4x^2 = x 4 − 8 x + 4 x 2 = x
4x^2 - 9x + 4 = 0 4 x 2 − 9 x + 4 = 0 4x^2 - 9x + 4 = 0 4 x 2 − 9 x + 4 = 0
Usa la formula quadratica per risolvere:
x = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 4 \cdot 4}}{2 \cdot 4} = \frac{9 \pm \sqrt{81 - 64}}{8} = \frac{9 \pm \sqrt{17}}{8} x = 9 ± ( − 9 ) 2 − 4 ⋅ 4 ⋅ 4 2 ⋅ 4 = 9 ± 81 − 64 8 = 9 ± 17 8 x = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 4 \cdot 4}}{2 \cdot 4} = \frac{9 \pm \sqrt{81 - 64}}{8} = \frac{9 \pm \sqrt{17}}{8} x = 2 ⋅ 4 9 ± ( − 9 ) 2 − 4 ⋅ 4 ⋅ 4 ​ ​ = 8 9 ± 81 − 64 ​ ​ = 8 9 ± 17 ​ ​
Calcola i valori di x x x x :
x_1 = \frac{9 + \sqrt{17}}{8} x 1 = 9 + 17 8 x_1 = \frac{9 + \sqrt{17}}{8} x 1 ​ = 8 9 + 17 ​ ​ (soluzione positiva)
x_2 = \frac{9 - \sqrt{17}}{8} x 2 = 9 − 17 8 x_2 = \frac{9 - \sqrt{17}}{8} x 2 ​ = 8 9 − 17 ​ ​ (soluzione negativa, non valida)
Calcola le concentrazioni all'equilibrio:
Usando x_1 x 1 x_1 x 1 ​ :
[\text{A}] = 1 - x_1 [ A ] = 1 − x 1 [\text{A}] = 1 - x_1 [ A ] = 1 − x 1 ​
[\text{B}] = 1 - x_1 [ B ] = 1 − x 1 [\text{B}] = 1 - x_1 [ B ] = 1 − x 1 ​
[\text{C}] = x_1 [ C ] = x 1 [\text{C}] = x_1 [ C ] = x 1 ​
Esercizio 3: Effetto della Temperatura sulla Costante di Equilibrio
Domanda: La reazione:
\text{D}(g) \rightleftharpoons \text{E}(g) + \text{F}(g) D ( g ) ⇌ E ( g ) + F ( g ) \text{D}(g) \rightleftharpoons \text{E}(g) + \text{F}(g) D ( g ) ⇌ E ( g ) + F ( g )
ha una costante di equilibrio K = 10 K = 10 K = 10 K = 10 a 25 °C. Se la temperatura aumenta a 50 °C e K K K K diventa 20, cosa puoi dedurre riguardo alla natura della reazione?
Risposta:
Un aumento della costante di equilibrio K K K K con l'aumento della temperatura indica che la reazione è endotermica. Questo perché, secondo il principio di Le Chatelier, un aumento della temperatura favorisce il lato della reazione che assorbe calore, che in questo caso è il lato dei prodotti.
Esercizio 4: Calcolo della Costante di Equilibrio da Pressioni
Domanda: Considera la seguente reazione:
\text{2 NO}(g) + \text{O}_2(g) \rightleftharpoons \text{2 NO}_2(g) 2 NO ( g ) + O 2 ( g ) ⇌ 2 NO 2 ( g ) \text{2 NO}(g) + \text{O}_2(g) \rightleftharpoons \text{2 NO}_2(g) 2 NO ( g ) + O 2 ​ ( g ) ⇌ 2 NO 2 ​ ( g )
Se all'equilibrio le pressioni parziali sono:
P_{NO} = 0.4 \, \text{atm} P N O = 0.4   atm P_{NO} = 0.4 \, \text{atm} P NO ​ = 0.4 atm
P_{O_2} = 0.2 \, \text{atm} P O 2 = 0.2   atm P_{O_2} = 0.2 \, \text{atm} P O 2 ​ ​ = 0.2 atm
P_{NO_2} = 0.6 \, \text{atm} P N O 2 = 0.6   atm P_{NO_2} = 0.6 \, \text{atm} P N O 2 ​ ​ = 0.6 atm
Calcola la costante di equilibrio K_p K p K_p K p ​ .
Risposta:
Scrivi l'espressione per K_p K p K_p K p ​ :
K_p = \frac{(P_{NO_2})^2}{(P_{NO})^2 (P_{O_2})} K p = ( P N O 2 ) 2 ( P N O ) 2 ( P O 2 ) K_p = \frac{(P_{NO_2})^2}{(P_{NO})^2 (P_{O_2})} K p ​ = ( P NO ​ ) 2 ( P O 2 ​ ​ ) ( P N O 2 ​ ​ ) 2 ​
Sostituisci i valori:
K_p = \frac{(0.6)^2}{(0.4)^2 (0.2)} K p = ( 0.6 ) 2 ( 0.4 ) 2 ( 0.2 ) K_p = \frac{(0.6)^2}{(0.4)^2 (0.2)} K p ​ = ( 0.4 ) 2 ( 0.2 ) ( 0.6 ) 2 ​
K_p = \frac{0.36}{0.16 \times 0.2} = \frac{0.36}{0.032} = 11.25 K p = 0.36 0.16 × 0.2 = 0.36 0.032 = 11.25 K_p = \frac{0.36}{0.16 \times 0.2} = \frac{0.36}{0.032} = 11.25 K p ​ = 0.16 × 0.2 0.36 ​ = 0.032 0.36 ​ = 11.25
English version
Exercises on the Equilibrium Constant
Introduction
The equilibrium constant (K K K K ) is a value that expresses the ratio between the concentrations of the products and reactants of a chemical reaction at equilibrium. For a generic reaction:
aA + bB \rightleftharpoons cC + dD a A + b B ⇌ c C + d D aA + bB \rightleftharpoons cC + dD a A + b B ⇌ c C + d D
The equilibrium constant is given by:
K = \frac{[C]^c [D]^d}{[A]^a [B]^b} K = [ C ] c [ D ] d [ A ] a [ B ] b K = \frac{[C]^c [D]^d}{[A]^a [B]^b} K = [ A ] a [ B ] b [ C ] c [ D ] d ​
where:
[C] [ C ] [C] [ C ] , [D] [ D ] [D] [ D ] , [A] [ A ] [A] [ A ] , [B] [ B ] [B] [ B ] are the molar concentrations of the reactants and products.
a a a a , b b b b , c c c c , d d d d are the stoichiometric coefficients.
Exercise 1: Calculating the Equilibrium Constant
Question: Consider the following equilibrium reaction:
\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) N 2 ( g ) + 3 H 2 ( g ) ⇌ 2 NH 3 ( g ) \text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) N 2 ​ ( g ) + 3 H 2 ​ ( g ) ⇌ 2 NH 3 ​ ( g )
If at equilibrium the concentrations are:
[\text{N}_2] = 0.5 \, \text{M} [ N 2 ] = 0.5   M [\text{N}_2] = 0.5 \, \text{M} [ N 2 ​ ] = 0.5 M
[\text{H}_2] = 0.2 \, \text{M} [ H 2 ] = 0.2   M [\text{H}_2] = 0.2 \, \text{M} [ H 2 ​ ] = 0.2 M
[\text{NH}_3] = 0.8 \, \text{M} [ NH 3 ] = 0.8   M [\text{NH}_3] = 0.8 \, \text{M} [ NH 3 ​ ] = 0.8 M
Calculate the equilibrium constant K K K K .
Answer:
Write the expression for K K K K :
K = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} K = [ NH 3 ] 2 [ N 2 ] [ H 2 ] 3 K = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} K = [ N 2 ​ ] [ H 2 ​ ] 3 [ NH 3 ​ ] 2 ​
Substitute the values:
K = \frac{(0.8)^2}{(0.5)(0.2)^3} K = ( 0.8 ) 2 ( 0.5 ) ( 0.2 ) 3 K = \frac{(0.8)^2}{(0.5)(0.2)^3} K = ( 0.5 ) ( 0.2 ) 3 ( 0.8 ) 2 ​
K = \frac{0.64}{0.5 \times 0.008} = \frac{0.64}{0.004} = 160 K = 0.64 0.5 × 0.008 = 0.64 0.004 = 160 K = \frac{0.64}{0.5 \times 0.008} = \frac{0.64}{0.004} = 160 K = 0.5 × 0.008 0.64 ​ = 0.004 0.64 ​ = 160
Exercise 2: Determining Equilibrium Concentrations
Question: In an equilibrium reaction:
\text{A}(g) + \text{B}(g) \rightleftharpoons \text{C}(g) A ( g ) + B ( g ) ⇌ C ( g ) \text{A}(g) + \text{B}(g) \rightleftharpoons \text{C}(g) A ( g ) + B ( g ) ⇌ C ( g )
The equilibrium constant K K K K is 4. If you initially have 1 M of \text{A} A \text{A} A and 1 M of \text{B} B \text{B} B , what will be the equilibrium concentrations?
Answer:
Set the initial concentrations:
[\text{A}]_0 = 1 \, \text{M} [ A ] 0 = 1   M [\text{A}]_0 = 1 \, \text{M} [ A ] 0 ​ = 1 M
[\text{B}]_0 = 1 \, \text{M} [ B ] 0 = 1   M [\text{B}]_0 = 1 \, \text{M} [ B ] 0 ​ = 1 M
[\text{C}]_0 = 0 \, \text{M} [ C ] 0 = 0   M [\text{C}]_0 = 0 \, \text{M} [ C ] 0 ​ = 0 M
Define the changes:
Let x x x x be the amount of \text{A} A \text{A} A and \text{B} B \text{B} B that react.
At equilibrium: - [\text{A}] = 1 - x [ A ] = 1 − x [\text{A}] = 1 - x [ A ] = 1 − x - [\text{B}] = 1 - x [ B ] = 1 − x [\text{B}] = 1 - x [ B ] = 1 − x - [\text{C}] = x [ C ] = x [\text{C}] = x [ C ] = x
Write the expression for K K K K :
K = \frac{[\text{C}]}{[\text{A}][\text{B}]} = 4 K = [ C ] [ A ] [ B ] = 4 K = \frac{[\text{C}]}{[\text{A}][\text{B}]} = 4 K = [ A ] [ B ] [ C ] ​ = 4
4 = \frac{x}{(1 - x)(1 - x)} 4 = x ( 1 − x ) ( 1 − x ) 4 = \frac{x}{(1 - x)(1 - x)} 4 = ( 1 − x ) ( 1 − x ) x ​
Solve the equation:
4(1 - x)^2 = x 4 ( 1 − x ) 2 = x 4(1 - x)^2 = x 4 ( 1 − x ) 2 = x
4(1 - 2x + x^2) = x 4 ( 1 − 2 x + x 2 ) = x 4(1 - 2x + x^2) = x 4 ( 1 − 2 x + x 2 ) = x
4 - 8x + 4x^2 = x 4 − 8 x + 4 x 2 = x 4 - 8x + 4x^2 = x 4 − 8 x + 4 x 2 = x
4x^2 - 9x + 4 = 0 4 x 2 − 9 x + 4 = 0 4x^2 - 9x + 4 = 0 4 x 2 − 9 x + 4 = 0
Use the quadratic formula to solve:
x = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 4 \cdot 4}}{2 \cdot 4} = \frac{9 \pm \sqrt{81 - 64}}{8} = \frac{9 \pm \sqrt{17}}{8} x = 9 ± ( − 9 ) 2 − 4 ⋅ 4 ⋅ 4 2 ⋅ 4 = 9 ± 81 − 64 8 = 9 ± 17 8 x = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 4 \cdot 4}}{2 \cdot 4} = \frac{9 \pm \sqrt{81 - 64}}{8} = \frac{9 \pm \sqrt{17}}{8} x = 2 ⋅ 4 9 ± ( − 9 ) 2 − 4 ⋅ 4 ⋅ 4 ​ ​ = 8 9 ± 81 − 64 ​ ​ = 8 9 ± 17 ​ ​
Calculate the values ​​of x x x x :
x_1 = \frac{9 + \sqrt{17}}{8} x 1 = 9 + 17 8 x_1 = \frac{9 + \sqrt{17}}{8} x 1 ​ = 8 9 + 17 ​ ​ (positive solution)
x_2 = \frac{9 - \sqrt{17}}{8} x 2 = 9 − 17 8 x_2 = \frac{9 - \sqrt{17}}{8} x 2 ​ = 8 9 − 17 ​ ​ (negative solution, invalid)
Calculate the equilibrium concentrations:
Using x_1 x 1 x_1 x 1 ​ :
[\text{A}] = 1 - x_1 [ A ] = 1 − x 1 [\text{A}] = 1 - x_1 [ A ] = 1 − x 1 ​
[\text{B}] = 1 - x_1 [ B ] = 1 − x 1 [\text{B}] = 1 - x_1 [ B ] = 1 − x 1 ​
[\text{C}] = x_1 [ C ] = x 1 [\text{C}] = x_1 [ C ] = x 1 ​
Exercise 3: Effect of Temperature on the Equilibrium Constant
Question: The reaction:
\text{D}(g) \rightleftharpoons \text{E}(g) + \text{F}(g) D ( g ) ⇌ E ( g ) + F ( g ) \text{D}(g) \rightleftharpoons \text{E}(g) + \text{F}(g) D ( g ) ⇌ E ( g ) + F ( g )
has an equilibrium constant of K = 10 K = 10 K = 10 K = 10 at 25 °C. If the temperature is increased to 50 °C and K K K K becomes 20, what can you deduce about the nature of the reaction?
Answer:
An increase in the equilibrium constant K K K K with increasing temperature indicates that the reaction is endothermic. This is because, according to Le Chatelier's principle, an increase in temperature favors the heat-absorbing side of the reaction, which in this case is the products side.
Exercise 4: Calculating the Equilibrium Constant from Pressures
Question: Consider the following reaction:
\text{2 NO}(g) + \text{O}_2(g) \rightleftharpoons \text{2 NO}_2(g) 2 NO ( g ) + O 2 ( g ) ⇌ 2 NO 2 ( g ) \text{2 NO}(g) + \text{O}_2(g) \rightleftharpoons \text{2 NO}_2(g) 2 NO ( g ) + O 2 ​ ( g ) ⇌ 2 NO 2 ​ ( g )
If at equilibrium the partial pressures are:
P_{NO} = 0.4 \, \text{atm} P N O = 0.4   atm P_{NO} = 0.4 \, \text{atm} P NO ​ = 0.4 atm
P_{O_2} = 0.2 \, \text{atm} P O 2 = 0.2   atm P_{O_2} = 0.2 \, \text{atm} P O 2 ​ ​ = 0.2 atm
P_{NO_2} = 0.6 \, \text{atm} P N O 2 = 0.6   atm P_{NO_2} = 0.6 \, \text{atm} P N O 2 ​ ​ = 0.6 atm
Calculate the equilibrium constant K_p K p K_p K p ​ .
Answer:
Write the expression for K_p K p K_p K p ​ :
K_p = \frac{(P_{NO_2})^2}{(P_{NO})^2 (P_{O_2})} K p = ( P N O 2 ) 2 ( P N O ) 2 ( P O 2 ) K_p = \frac{(P_{NO_2})^2}{(P_{NO})^2 (P_{O_2})} K p ​ = ( P NO ​ ) 2 ( P O 2 ​ ​ ) ( P N O 2 ​ ​ ) 2 ​
Substitute the values:
K_p = \frac{(0.6)^2}{(0.4)^2 (0.2)} K p = ( 0.6 ) 2 ( 0.4 ) 2 ( 0.2 ) K_p = \frac{(0.6)^2}{(0.4)^2 (0.2)} K p ​ = ( 0.4 ) 2 ( 0.2 ) ( 0.6 ) 2 ​
K_p = \frac{0.36}{0.16 \times 0.2} = \frac{0.36}{0.032} = 11.25 K p = 0.36 0.16 × 0.2 = 0.36 0.032 = 11.25 K_p = \frac{0.36}{0.16 \times 0.2} = \frac{0.36}{0.032} = 11.25 K p ​ = 0.16 × 0.2 0.36 ​ = 0.032 0.36 ​ = 11.25
Commenti
Posta un commento