Esercizi sul Teorema dell'Energia Cinetica

Esercizi sul Teorema dell'Energia Cinetica Esercizi sul Teorema dell'Energia Cinetica
Esercizi sul Teorema dell'Energia Cinetica

Versione italiana

Esercizi sul Teorema dell'Energia Cinetica

Concetti Chiave

Il teorema dell'energia cinetica afferma che il lavoro totale WWW compiuto su un corpo è uguale alla variazione dell'energia cinetica \Delta KΔK\Delta K del corpo. La formula è espressa come:

W = \Delta K = K_f - K_i W=ΔK=KfKi W = \Delta K = K_f - K_i

dove:

  • WWW è il lavoro totale (in joule, J),
  • K_fKfK_f è l'energia cinetica finale (in joule, J),
  • K_iKiK_i è l'energia cinetica iniziale (in joule, J).

L'energia cinetica KKK di un corpo di massa mmm che si muove con velocità vvv è data da:

K = \frac{1}{2} m v^2 K=12mv2 K = \frac{1}{2} m v^2

Esercizio 1: Calcolo della Variazione dell'Energia Cinetica

Dati

Un oggetto di massa m = 2 \, \text{kg}m=2kgm = 2 \, \text{kg} passa da una velocità iniziale v_i = 3 \, \text{m/s}vi=3m/sv_i = 3 \, \text{m/s} a una velocità finale v_f = 5 \, \text{m/s}vf=5m/sv_f = 5 \, \text{m/s}.

Obiettivo

Calcola il lavoro WWW compiuto sull'oggetto.

Soluzione

Calcoliamo l'energia cinetica iniziale K_iKiK_i:

K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \cdot 2 \, \text{kg} \cdot (3 \, \text{m/s})^2 = \frac{1}{2} \cdot 2 \cdot 9 = 9 \, \text{J} Ki=12mvi2=122kg(3m/s)2=1229=9J K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \cdot 2 \, \text{kg} \cdot (3 \, \text{m/s})^2 = \frac{1}{2} \cdot 2 \cdot 9 = 9 \, \text{J}

Calcoliamo l'energia cinetica finale K_fKfK_f:

K_f = \frac{1}{2} m v_f^2 = \frac{1}{2} \cdot 2 \, \text{kg} \cdot (5 \, \text{m/s})^2 = \frac{1}{2} \cdot 2 \cdot 25 = 25 \, \text{J} Kf=12mvf2=122kg(5m/s)2=12225=25J K_f = \frac{1}{2} m v_f^2 = \frac{1}{2} \cdot 2 \, \text{kg} \cdot (5 \, \text{m/s})^2 = \frac{1}{2} \cdot 2 \cdot 25 = 25 \, \text{J}

Ora calcoliamo la variazione dell'energia cinetica:

\Delta K = K_f - K_i = 25 \, \text{J} - 9 \, \text{J} = 16 \, \text{J} ΔK=KfKi=25J9J=16J \Delta K = K_f - K_i = 25 \, \text{J} - 9 \, \text{J} = 16 \, \text{J}

Quindi, il lavoro compiuto sull'oggetto è W = 16 \, \text{J}W=16JW = 16 \, \text{J}.

Esercizio 2: Calcolo della Velocità Finale

Dati

Un oggetto di massa m = 4 \, \text{kg}m=4kgm = 4 \, \text{kg} riceve un lavoro di W = 32 \, \text{J}W=32JW = 32 \, \text{J} e parte da una velocità iniziale v_i = 2 \, \text{m/s}vi=2m/sv_i = 2 \, \text{m/s}.

Obiettivo

Calcola la velocità finale v_fvfv_f dell'oggetto.

Soluzione

Calcoliamo l'energia cinetica iniziale K_iKiK_i:

K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \cdot 4 \, \text{kg} \cdot (2 \, \text{m/s})^2 = \frac{1}{2} \cdot 4 \cdot 4 = 8 \, \text{J} Ki=12mvi2=124kg(2m/s)2=1244=8J K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \cdot 4 \, \text{kg} \cdot (2 \, \text{m/s})^2 = \frac{1}{2} \cdot 4 \cdot 4 = 8 \, \text{J}

Utilizziamo il teorema dell'energia cinetica:

W = \Delta K = K_f - K_i W=ΔK=KfKi W = \Delta K = K_f - K_i

Sostituendo i valori:

32 \, \text{J} = K_f - 8 \, \text{J} \implies K_f = 32 \, \text{J} + 8 \, \text{J} = 40 \, \text{J} 32J=Kf8J    Kf=32J+8J=40J 32 \, \text{J} = K_f - 8 \, \text{J} \implies K_f = 32 \, \text{J} + 8 \, \text{J} = 40 \, \text{J}

Ora calcoliamo la velocità finale v_fvfv_f:

K_f = \frac{1}{2} m v_f^2 \implies 40 \, \text{J} = \frac{1}{2} \cdot 4 \, \text{kg} \cdot v_f^2 Kf=12mvf2    40J=124kgvf2 K_f = \frac{1}{2} m v_f^2 \implies 40 \, \text{J} = \frac{1}{2} \cdot 4 \, \text{kg} \cdot v_f^2

Moltiplichiamo entrambi i lati per 2 per eliminare il frazionamento:

80 \, \text{J} = 4 \, \text{kg} \cdot v_f^2 80J=4kgvf2 80 \, \text{J} = 4 \, \text{kg} \cdot v_f^2

Dividiamo entrambi i lati per 4 \, \text{kg}4kg4 \, \text{kg}:

v_f^2 = \frac{80 \, \text{J}}{4 \, \text{kg}} = 20 \, \text{m}^2/\text{s}^2 vf2=80J4kg=20m2/s2 v_f^2 = \frac{80 \, \text{J}}{4 \, \text{kg}} = 20 \, \text{m}^2/\text{s}^2

Ora prendiamo la radice quadrata di entrambi i lati per trovare v_fvfv_f:

v_f = \sqrt{20 \, \text{m}^2/\text{s}^2} \approx 4.47 \, \text{m/s} vf=20m2/s24.47m/s v_f = \sqrt{20 \, \text{m}^2/\text{s}^2} \approx 4.47 \, \text{m/s}

Quindi, la velocità finale dell'oggetto è v_f \approx 4.47 \, \text{m/s}vf4.47m/sv_f \approx 4.47 \, \text{m/s}.

Esercizio 3: Calcolo della Massa da Lavoro e Variazione di Velocità

Dati

Un oggetto riceve un lavoro di W = 50 \, \text{J}W=50JW = 50 \, \text{J} e la sua velocità aumenta da v_i = 1 \, \text{m/s}vi=1m/sv_i = 1 \, \text{m/s} a v_f = 3 \, \text{m/s}vf=3m/sv_f = 3 \, \text{m/s}.

Obiettivo

Calcola la massa mmm dell'oggetto.

Soluzione

Calcoliamo l'energia cinetica iniziale K_iKiK_i:

K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} m (1 \, \text{m/s})^2 = \frac{1}{2} m \cdot 1 = \frac{1}{2} m \, \text{J} Ki=12mvi2=12m(1m/s)2=12m1=12mJ K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} m (1 \, \text{m/s})^2 = \frac{1}{2} m \cdot 1 = \frac{1}{2} m \, \text{J}

Calcoliamo l'energia cinetica finale K_fKfK_f:

K_f = \frac{1}{2} m v_f^2 = \frac{1}{2} m (3 \, \text{m/s})^2 = \frac{1}{2} m \cdot 9 = \frac{9}{2} m \, \text{J} Kf=12mvf2=12m(3m/s)2=12m9=92mJ K_f = \frac{1}{2} m v_f^2 = \frac{1}{2} m (3 \, \text{m/s})^2 = \frac{1}{2} m \cdot 9 = \frac{9}{2} m \, \text{J}

Utilizziamo il teorema dell'energia cinetica:

W = \Delta K = K_f - K_i W=ΔK=KfKi W = \Delta K = K_f - K_i

Sostituendo i valori:

50 \, \text{J} = \frac{9}{2} m - \frac{1}{2} m 50J=92m12m 50 \, \text{J} = \frac{9}{2} m - \frac{1}{2} m

Semplificando l'equazione:

50 \, \text{J} = \left( \frac{9}{2} - \frac{1}{2} \right) m = \frac{8}{2} m = 4m 50J=(9212)m=82m=4m 50 \, \text{J} = \left( \frac{9}{2} - \frac{1}{2} \right) m = \frac{8}{2} m = 4m

Ora risolviamo per mmm:

m = \frac{50 \, \text{J}}{4} = 12.5 \, \text{kg} m=50J4=12.5kg m = \frac{50 \, \text{J}}{4} = 12.5 \, \text{kg}

Quindi, la massa dell'oggetto è m = 12.5 \, \text{kg}m=12.5kgm = 12.5 \, \text{kg}.

English version

Kinetic Energy Theorem Exercises

Key Concepts

The kinetic energy theorem states that the total work WWW done on a body is equal to the change in the kinetic energy \Delta KΔK\Delta K of the body. The formula is expressed as:

W = \Delta K = K_f - K_i W=ΔK=KfKi W = \Delta K = K_f - K_i

where:

  • WWW is the total work (in joules, J),
  • K_fKfK_f is the final kinetic energy (in joules, J),
  • K_iKiK_i is the initial kinetic energy (in joules, J).

The kinetic energy KKK of a body of mass mmm moving with velocity vvv is given by:

K = \frac{1}{2} m v^2 K=12mv2 K = \frac{1}{2} m v^2

Exercise 1: Calculating the Change in Kinetic Energy

Data

An object of mass m = 2 \, \text{kg}m=2kgm = 2 \, \text{kg} goes from an initial velocity v_i = 3 \, \text{m/s}vi=3m/sv_i = 3 \, \text{m/s} to a final velocity v_f = 5 \, \text{m/s}vf=5m/sv_f = 5 \, \text{m/s}.

Objective

Calculate the work WWW done on the object.

Solution

We calculate the initial kinetic energy K_iKiK_i:
K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \cdot 2 \, \text{kg} \cdot (3 \, \text{m/s})^2 = \frac{1}{2} \cdot 2 \cdot 9 = 9 \, \text{J}Ki=12mvi2=122kg(3m/s)2=1229=9JK_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \cdot 2 \, \text{kg} \cdot (3 \, \text{m/s})^2 = \frac{1}{2} \cdot 2 \cdot 9 = 9 \, \text{J}
We calculate the final kinetic energy K_fKfK_f:
K_f = \frac{1}{2} m v_f^2 = \frac{1}{2} \cdot 2 \, \text{kg} \cdot (5 \, \text{m/s})^2 = \frac{1}{2} \cdot 2 \cdot 25 = 25 \, \text{J}Kf=12mvf2=122kg(5m/s)2=12225=25JK_f = \frac{1}{2} m v_f^2 = \frac{1}{2} \cdot 2 \, \text{kg} \cdot (5 \, \text{m/s})^2 = \frac{1}{2} \cdot 2 \cdot 25 = 25 \, \text{J}
Now let's calculate the change in kinetic energy:

\Delta K = K_f - K_i = 25 \, \text{J} - 9 \, \text{J} = 16 \, \text{J} ΔK=KfKi=25J9J=16J \Delta K = K_f - K_i = 25 \, \text{J} - 9 \, \text{J} = 16 \, \text{J}

Therefore, the work done on the object is W = 16 \, \text{J}W=16JW = 16 \, \text{J}.

Exercise 2: Calculating the Final Velocity

Data

An object of mass m = 4 \, \text{kg}m=4kgm = 4 \, \text{kg} receives a work of W = 32 \, \text{J}W=32JW = 32 \, \text{J} and starts from an initial velocity v_i = 2 \, \text{m/s}vi=2m/sv_i = 2 \, \text{m/s}.

Objective

Calculate the final velocity v_fvfv_f of the object.

Solution

Let's calculate the initial kinetic energy K_iKiK_i:

K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \cdot 4 \, \text{kg} \cdot (2 \, \text{m/s})^2 = \frac{1}{2} \cdot 4 \cdot 4 = 8 \, \text{J} Ki=12mvi2=124kg(2m/s)2=1244=8J K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \cdot 4 \, \text{kg} \cdot (2 \, \text{m/s})^2 = \frac{1}{2} \cdot 4 \cdot 4 = 8 \, \text{J}

Let's use the kinetic energy theorem:

W = \Delta K = K_f - K_i W=ΔK=KfKi W = \Delta K = K_f - K_i

Substituting the values:

32 \, \text{J} = K_f - 8 \, \text{J} \implies K_f = 32 \, \text{J} + 8 \, \text{J} = 40 \, \text{J} 32J=Kf8J    Kf=32J+8J=40J 32 \, \text{J} = K_f - 8 \, \text{J} \implies K_f = 32 \, \text{J} + 8 \, \text{J} = 40 \, \text{J}

Now let's calculate the final velocity v_fvfv_f:

K_f = \frac{1}{2} m v_f^2 \implies 40 \, \text{J} = \frac{1}{2} \cdot 4 \, \text{kg} \cdot v_f^2 Kf=12mvf2    40J=124kgvf2 K_f = \frac{1}{2} m v_f^2 \implies 40 \, \text{J} = \frac{1}{2} \cdot 4 \, \text{kg} \cdot v_f^2

We multiply both sides by 2 to eliminate the fractionation:

80 \, \text{J} = 4 \, \text{kg} \cdot v_f^2 80J=4kgvf2 80 \, \text{J} = 4 \, \text{kg} \cdot v_f^2

We divide both sides by 4 \, \text{kg}4kg4 \, \text{kg}:

v_f^2 = \frac{80 \, \text{J}}{4 \, \text{kg}} = 20 \, \text{m}^2/\text{s}^2 vf2=80J4kg=20m2/s2 v_f^2 = \frac{80 \, \text{J}}{4 \, \text{kg}} = 20 \, \text{m}^2/\text{s}^2

Now we take the square root of both sides to find v_fvfv_f:

v_f = \sqrt{20 \, \text{m}^2/\text{s}^2} \approx 4.47 \, \text{m/s} vf=20m2/s24.47m/s v_f = \sqrt{20 \, \text{m}^2/\text{s}^2} \approx 4.47 \, \text{m/s}

So, the final velocity of the object is v_f \approx 4.47 \, \text{m/s}vf4.47m/sv_f \approx 4.47 \, \text{m/s}.

Exercise 3: Calculating the Work Mass and Velocity Change

Data

An object receives a work of W = 50 \, \text{J}W=50JW = 50 \, \text{J} and its velocity increases from v_i = 1 \, \text{m/s}vi=1m/sv_i = 1 \, \text{m/s} to v_f = 3 \, \text{m/s}vf=3m/sv_f = 3 \, \text{m/s}.

Objective

Calculate the mass mmm of the object.

Solution

Let's calculate the initial kinetic energy K_iKiK_i:

K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} m (1 \, \text{m/s})^2 = \frac{1}{2} m \cdot 1 = \frac{1}{2} m \, \text{J} Ki=12mvi2=12m(1m/s)2=12m1=12mJ K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} m (1 \, \text{m/s})^2 = \frac{1}{2} m \cdot 1 = \frac{1}{2} m \, \text{J}

Let's calculate the final kinetic energy K_fKfK_f:

K_f = \frac{1}{2} m v_f^2 = \frac{1}{2} m (3 \, \text{m/s})^2 = \frac{1}{2} m \cdot 9 = \frac{9}{2} m \, \text{J} Kf=12mvf2=12m(3m/s)2=12m9=92mJ K_f = \frac{1}{2} m v_f^2 = \frac{1}{2} m (3 \, \text{m/s})^2 = \frac{1}{2} m \cdot 9 = \frac{9}{2} m \, \text{J}

Let's use the kinetic energy theorem:

W = \Delta K = K_f - K_i W=ΔK=KfKi W = \Delta K = K_f - K_i

Substituting the values:

50 \, \text{J} = \frac{9}{2} m - \frac{1}{2} m 50J=92m12m 50 \, \text{J} = \frac{9}{2} m - \frac{1}{2} m

Simplifying the equation:

50 \, \text{J} = \left( \frac{9}{2} - \frac{1}{2} \right) m = \frac{8}{2} m = 4m 50J=(9212)m=82m=4m 50 \, \text{J} = \left( \frac{9}{2} - \frac{1}{2} \right) m = \frac{8}{2} m = 4m

Now let's solve for mmm:

m = \frac{50 \, \text{J}}{4} = 12.5 \, \text{kg} m=50J4=12.5kg m = \frac{50 \, \text{J}}{4} = 12.5 \, \text{kg}

So, the mass of the object is m = 12.5 \, \text{kg}m=12.5kgm = 12.5 \, \text{kg}.

Commenti