Versione italiana
Esercizi sul Rotore
Definizione
Il rotore è un operatore che misura la tendenza di un campo vettoriale a ruotare attorno a un punto. È definito per campi vettoriali tridimensionali e viene denotato con il simbolo \nabla \times \mathbf{F} ∇ × F \nabla \times \mathbf{F} ∇ × F , dove \mathbf{F} F \mathbf{F} F è un campo vettoriale.
Se \mathbf{F} = (F_x, F_y, F_z) F = ( F x , F y , F z ) \mathbf{F} = (F_x, F_y, F_z) F = ( F x ​ , F y ​ , F z ​ ) è un campo vettoriale definito in uno spazio tridimensionale, il rotore di \mathbf{F} F \mathbf{F} F è dato da:
\nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_x & F_y & F_z
\end{vmatrix} ∇ × F = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F y F z ∣ \nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_x & F_y & F_z
\end{vmatrix} ∇ × F = ​ i ∂ x ∂ ​ F x ​ ​ j ∂ y ∂ ​ F y ​ ​ k ∂ z ∂ ​ F z ​ ​ ​
Dove:
\mathbf{i}, \mathbf{j}, \mathbf{k} i , j , k \mathbf{i}, \mathbf{j}, \mathbf{k} i , j , k sono i versori delle coordinate cartesiane,
F_x, F_y, F_z F x , F y , F z F_x, F_y, F_z F x ​ , F y ​ , F z ​ sono le componenti del campo vettoriale \mathbf{F} F \mathbf{F} F .
Espandendo il determinante, otteniamo:
\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) ∇ × F = ( ∂ F z ∂ y − ∂ F y ∂ z , ∂ F x ∂ z − ∂ F z ∂ x , ∂ F y ∂ x − ∂ F x ∂ y ) \nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) ∇ × F = ( ∂ y ∂ F z ​ ​ − ∂ z ∂ F y ​ ​ , ∂ z ∂ F x ​ ​ − ∂ x ∂ F z ​ ​ , ∂ x ∂ F y ​ ​ − ∂ y ∂ F x ​ ​ )
Proprietà del Rotore
Linearità : Il rotore è un operatore lineare. Se \mathbf{F} F \mathbf{F} F e \mathbf{G} G \mathbf{G} G sono campi vettoriali e a a a a è una costante, allora:
\nabla \times (a\mathbf{F} + \mathbf{G}) = a(\nabla \times \mathbf{F}) + (\nabla \times \mathbf{G}) ∇ × ( a F + G ) = a ( ∇ × F ) + ( ∇ × G ) \nabla \times (a\mathbf{F} + \mathbf{G}) = a(\nabla \times \mathbf{F}) + (\nabla \times \mathbf{G}) ∇ × ( a F + G ) = a ( ∇ × F ) + ( ∇ × G )
Rotore di un Gradiente : Il rotore del gradiente di una funzione scalare è sempre zero:
\nabla \times (\nabla f) = 0 ∇ × ( ∇ f ) = 0 \nabla \times (\nabla f) = 0 ∇ × ( ∇ f ) = 0
Questo implica che i campi conservativi (campi derivanti da un potenziale scalare) hanno un rotore nullo.
Rotore di un Campo Vettoriale Costante : Se \mathbf{F} F \mathbf{F} F è un campo vettoriale costante, allora:
\nabla \times \mathbf{F} = 0 ∇ × F = 0 \nabla \times \mathbf{F} = 0 ∇ × F = 0
Applicazioni del Rotore
Fluidodinamica : In fluidodinamica, il rotore di un campo di velocità rappresenta la vorticità del fluido. Un campo di velocità con rotore diverso da zero indica la presenza di vortici e turbolenze.
Elettromagnetismo : Nelle equazioni di Maxwell, il rotore del campo elettrico e del campo magnetico è utilizzato per descrivere come i campi elettrici e magnetici interagiscono e si propagano. Ad esempio, la legge di Faraday dell'induzione elettromagnetica è espressa come:
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} ∇ × E = − ∂ B ∂ t \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} ∇ × E = − ∂ t ∂ B ​
Ingegneria Meccanica : Il rotore è utilizzato per analizzare il comportamento di sistemi meccanici e per studiare il movimento rotatorio di corpi rigidi.
Esercizi
Esercizio 1: Calcolo del Rotore
Calcola il rotore del campo vettoriale \mathbf{F} = (y^2, x^2, z) F = ( y 2 , x 2 , z ) \mathbf{F} = (y^2, x^2, z) F = ( y 2 , x 2 , z ) .
Soluzione :
Utilizziamo la formula del rotore:
\nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^2 & x^2 & z
\end{vmatrix} ∇ × F = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z y 2 x 2 z ∣ \nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^2 & x^2 & z
\end{vmatrix} ∇ × F = ​ i ∂ x ∂ ​ y 2 ​ j ∂ y ∂ ​ x 2 ​ k ∂ z ∂ ​ z ​ ​
Espandendo il determinante, otteniamo:
\nabla \times \mathbf{F} = \left( \frac{\partial z}{\partial y} - \frac{\partial x^2}{\partial z}, \frac{\partial y^2}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial x^2}{\partial x} - \frac{\partial y^2}{\partial y} \right) ∇ × F = ( ∂ z ∂ y − ∂ x 2 ∂ z , ∂ y 2 ∂ z − ∂ z ∂ x , ∂ x 2 ∂ x − ∂ y 2 ∂ y ) \nabla \times \mathbf{F} = \left( \frac{\partial z}{\partial y} - \frac{\partial x^2}{\partial z}, \frac{\partial y^2}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial x^2}{\partial x} - \frac{\partial y^2}{\partial y} \right) ∇ × F = ( ∂ y ∂ z ​ − ∂ z ∂ x 2 ​ , ∂ z ∂ y 2 ​ − ∂ x ∂ z ​ , ∂ x ∂ x 2 ​ − ∂ y ∂ y 2 ​ )
Calcolando le derivate parziali:
\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 2 - 2 \right) = (0, 0, 0) ∇ × F = ( 0 − 0 , 0 − 0 , 2 − 2 ) = ( 0 , 0 , 0 ) \nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 2 - 2 \right) = (0, 0, 0) ∇ × F = ( 0 − 0 , 0 − 0 , 2 − 2 ) = ( 0 , 0 , 0 )
Quindi, il rotore del campo vettoriale è zero.
Esercizio 2: Rotore in un Campo Vorticoso
Calcola il rotore del campo vettoriale \mathbf{F} = (-y, x, 0) F = ( − y , x , 0 ) \mathbf{F} = (-y, x, 0) F = ( − y , x , 0 ) .
Soluzione :
Utilizziamo la formula del rotore:
\nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y & x & 0
\end{vmatrix} ∇ × F = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z − y x 0 ∣ \nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y & x & 0
\end{vmatrix} ∇ × F = ​ i ∂ x ∂ ​ − y ​ j ∂ y ∂ ​ x ​ k ∂ z ∂ ​ 0 ​ ​
Espandendo il determinante, otteniamo:
\nabla \times \mathbf{F} = \left( \frac{\partial (0)}{\partial y} - \frac{\partial (x)}{\partial z}, \frac{\partial (-y)}{\partial z} - \frac{\partial (0)}{\partial x}, \frac{\partial (x)}{\partial x} - \frac{\partial (-y)}{\partial y} \right) ∇ × F = ( ∂ ( 0 ) ∂ y − ∂ ( x ) ∂ z , ∂ ( − y ) ∂ z − ∂ ( 0 ) ∂ x , ∂ ( x ) ∂ x − ∂ ( − y ) ∂ y ) \nabla \times \mathbf{F} = \left( \frac{\partial (0)}{\partial y} - \frac{\partial (x)}{\partial z}, \frac{\partial (-y)}{\partial z} - \frac{\partial (0)}{\partial x}, \frac{\partial (x)}{\partial x} - \frac{\partial (-y)}{\partial y} \right) ∇ × F = ( ∂ y ∂ ( 0 ) ​ − ∂ z ∂ ( x ) ​ , ∂ z ∂ ( − y ) ​ − ∂ x ∂ ( 0 ) ​ , ∂ x ∂ ( x ) ​ − ∂ y ∂ ( − y ) ​ )
Calcolando le derivate parziali:
\frac{\partial (0)}{\partial y} = 0 ∂ ( 0 ) ∂ y = 0 \frac{\partial (0)}{\partial y} = 0 ∂ y ∂ ( 0 ) ​ = 0
\frac{\partial (x)}{\partial z} = 0 ∂ ( x ) ∂ z = 0 \frac{\partial (x)}{\partial z} = 0 ∂ z ∂ ( x ) ​ = 0
\frac{\partial (-y)}{\partial z} = 0 ∂ ( − y ) ∂ z = 0 \frac{\partial (-y)}{\partial z} = 0 ∂ z ∂ ( − y ) ​ = 0
\frac{\partial (0)}{\partial x} = 0 ∂ ( 0 ) ∂ x = 0 \frac{\partial (0)}{\partial x} = 0 ∂ x ∂ ( 0 ) ​ = 0
\frac{\partial (x)}{\partial x} = 1 ∂ ( x ) ∂ x = 1 \frac{\partial (x)}{\partial x} = 1 ∂ x ∂ ( x ) ​ = 1
\frac{\partial (-y)}{\partial y} = -1 ∂ ( − y ) ∂ y = − 1 \frac{\partial (-y)}{\partial y} = -1 ∂ y ∂ ( − y ) ​ = − 1
Sostituendo i risultati:
\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 1 - (-1) \right) = (0, 0, 2) ∇ × F = ( 0 − 0 , 0 − 0 , 1 − ( − 1 ) ) = ( 0 , 0 , 2 ) \nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 1 - (-1) \right) = (0, 0, 2) ∇ × F = ( 0 − 0 , 0 − 0 , 1 − ( − 1 ) ) = ( 0 , 0 , 2 )
Quindi, il rotore del campo vettoriale \mathbf{F} = (-y, x, 0) F = ( − y , x , 0 ) \mathbf{F} = (-y, x, 0) F = ( − y , x , 0 ) è:
\nabla \times \mathbf{F} = (0, 0, 2) ∇ × F = ( 0 , 0 , 2 ) \nabla \times \mathbf{F} = (0, 0, 2) ∇ × F = ( 0 , 0 , 2 )
Esercizio 3: Calcolo del Rotore di un Campo Vettoriale
Calcola il rotore del campo vettoriale \mathbf{F} = (2xy, x^2, z) F = ( 2 x y , x 2 , z ) \mathbf{F} = (2xy, x^2, z) F = ( 2 x y , x 2 , z ) .
Soluzione:
Utilizziamo la formula del rotore in coordinate cartesiane:
\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)
∇ × F = ( ∂ F z ∂ y − ∂ F y ∂ z , ∂ F x ∂ z − ∂ F z ∂ x , ∂ F y ∂ x − ∂ F x ∂ y )
\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)
∇ × F = ( ∂ y ∂ F z ​ ​ − ∂ z ∂ F y ​ ​ , ∂ z ∂ F x ​ ​ − ∂ x ∂ F z ​ ​ , ∂ x ∂ F y ​ ​ − ∂ y ∂ F x ​ ​ )
Calcoliamo ciascun componente:
Primo componente :
\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial (x^2)}{\partial z} = 0 - 0 = 0
∂ F z ∂ y − ∂ F y ∂ z = ∂ z ∂ y − ∂ ( x 2 ) ∂ z = 0 − 0 = 0
\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial (x^2)}{\partial z} = 0 - 0 = 0
∂ y ∂ F z ​ ​ − ∂ z ∂ F y ​ ​ = ∂ y ∂ z ​ − ∂ z ∂ ( x 2 ) ​ = 0 − 0 = 0
Secondo componente :
\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial (2xy)}{\partial z} - \frac{\partial z}{\partial x} = 0 - 0 = 0
∂ F x ∂ z − ∂ F z ∂ x = ∂ ( 2 x y ) ∂ z − ∂ z ∂ x = 0 − 0 = 0
\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial (2xy)}{\partial z} - \frac{\partial z}{\partial x} = 0 - 0 = 0
∂ z ∂ F x ​ ​ − ∂ x ∂ F z ​ ​ = ∂ z ∂ ( 2 x y ) ​ − ∂ x ∂ z ​ = 0 − 0 = 0
Terzo componente :
\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (x^2)}{\partial x} - \frac{\partial (2xy)}{\partial y} = 2x - 2x = 0
∂ F y ∂ x − ∂ F x ∂ y = ∂ ( x 2 ) ∂ x − ∂ ( 2 x y ) ∂ y = 2 x − 2 x = 0
\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (x^2)}{\partial x} - \frac{\partial (2xy)}{\partial y} = 2x - 2x = 0
∂ x ∂ F y ​ ​ − ∂ y ∂ F x ​ ​ = ∂ x ∂ ( x 2 ) ​ − ∂ y ∂ ( 2 x y ) ​ = 2 x − 2 x = 0
Quindi, il rotore è:
\nabla \times \mathbf{F} = (0, 0, 0)
∇ × F = ( 0 , 0 , 0 )
\nabla \times \mathbf{F} = (0, 0, 0)
∇ × F = ( 0 , 0 , 0 )
Esercizio 4: Rotore di un Campo Vettoriale in Coordinate Polari
Calcola il rotore del campo vettoriale \mathbf{F} = (0, r^2, 0) F = ( 0 , r 2 , 0 ) \mathbf{F} = (0, r^2, 0) F = ( 0 , r 2 , 0 ) in coordinate polari.
Soluzione:
In coordinate polari, il rotore è dato da:
\nabla \times \mathbf{F} = \left( \frac{1}{r} \frac{\partial (r F_z)}{\partial r} - \frac{\partial F_r}{\partial z}, \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r}, \frac{1}{r} \frac{\partial (r F_\theta)}{\partial r} - \frac{1}{r} \frac{\partial F_r}{\partial \theta} \right)
∇ × F = ( 1 r ∂ ( r F z ) ∂ r − ∂ F r ∂ z , ∂ F r ∂ z − ∂ F z ∂ r , 1 r ∂ ( r F θ ) ∂ r − 1 r ∂ F r ∂ θ )
\nabla \times \mathbf{F} = \left( \frac{1}{r} \frac{\partial (r F_z)}{\partial r} - \frac{\partial F_r}{\partial z}, \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r}, \frac{1}{r} \frac{\partial (r F_\theta)}{\partial r} - \frac{1}{r} \frac{\partial F_r}{\partial \theta} \right)
∇ × F = ( r 1 ​ ∂ r ∂ ( r F z ​ ) ​ − ∂ z ∂ F r ​ ​ , ∂ z ∂ F r ​ ​ − ∂ r ∂ F z ​ ​ , r 1 ​ ∂ r ∂ ( r F θ ​ ) ​ − r 1 ​ ∂ θ ∂ F r ​ ​ )
Dove F_r = 0 F r = 0 F_r = 0 F r ​ = 0 , F_\theta = r^2 F θ = r 2 F_\theta = r^2 F θ ​ = r 2 , e F_z = 0 F z = 0 F_z = 0 F z ​ = 0 .
Calcoliamo ciascun componente:
Primo componente :
\frac{1}{r} \frac{\partial (r \cdot 0)}{\partial r} - \frac{\partial (0)}{\partial z} = 0 - 0 = 0
1 r ∂ ( r ⋅ 0 ) ∂ r − ∂ ( 0 ) ∂ z = 0 − 0 = 0
\frac{1}{r} \frac{\partial (r \cdot 0)}{\partial r} - \frac{\partial (0)}{\partial z} = 0 - 0 = 0
r 1 ​ ∂ r ∂ ( r ⋅ 0 ) ​ − ∂ z ∂ ( 0 ) ​ = 0 − 0 = 0
Secondo componente :
\frac{\partial (0)}{\partial z} - \frac{\partial (0)}{\partial r} = 0
∂ ( 0 ) ∂ z − ∂ ( 0 ) ∂ r = 0
\frac{\partial (0)}{\partial z} - \frac{\partial (0)}{\partial r} = 0
∂ z ∂ ( 0 ) ​ − ∂ r ∂ ( 0 ) ​ = 0
Terzo componente :
\frac{1}{r} \frac{\partial (r \cdot r^2)}{\partial r} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} = \frac{1}{r} \frac{\partial (r^3)}{\partial r} - 0 = \frac{1}{r} \cdot 3r^2 = 3r
1 r ∂ ( r ⋅ r 2 ) ∂ r − 1 r ∂ ( 0 ) ∂ θ = 1 r ∂ ( r 3 ) ∂ r − 0 = 1 r ⋅ 3 r 2 = 3 r
\frac{1}{r} \frac{\partial (r \cdot r^2)}{\partial r} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} = \frac{1}{r} \frac{\partial (r^3)}{\partial r} - 0 = \frac{1}{r} \cdot 3r^2 = 3r
r 1 ​ ∂ r ∂ ( r ⋅ r 2 ) ​ − r 1 ​ ∂ θ ∂ ( 0 ) ​ = r 1 ​ ∂ r ∂ ( r 3 ) ​ − 0 = r 1 ​ ⋅ 3 r 2 = 3 r
Quindi, il rotore del campo vettoriale in coordinate polari è:
\nabla \times \mathbf{F} = (0, 0, 3r)
∇ × F = ( 0 , 0 , 3 r )
\nabla \times \mathbf{F} = (0, 0, 3r)
∇ × F = ( 0 , 0 , 3 r )
Esercizio 5: Rotore di un Campo Vettoriale in Coordinate Sferiche
Calcola il rotore del campo vettoriale \mathbf{F} = (r^2 \sin \theta, r^2 \cos \theta, z) F = ( r 2 sin ⁡ θ , r 2 cos ⁡ θ , z ) \mathbf{F} = (r^2 \sin \theta, r^2 \cos \theta, z) F = ( r 2 sin θ , r 2 cos θ , z ) in coordinate sferiche.
Soluzione:
In coordinate sferiche, il rotore è dato da:
\nabla \times \mathbf{F} = \left( \frac{1}{r \sin \theta} \left( \frac{\partial (F_\phi \sin \theta)}{\partial \theta} - \frac{\partial F_\theta}{\partial \phi} \right), \frac{1}{r} \left( \frac{\partial F_r}{\partial \phi} - \frac{\partial (F_\phi r)}{\partial r} \right), \frac{1}{r} \left( \frac{\partial (F_\theta r)}{\partial r} - \frac{\partial F_r}{\partial \theta} \right) \right)
∇ × F = ( 1 r sin ⁡ θ ( ∂ ( F ϕ sin ⁡ θ ) ∂ θ − ∂ F θ ∂ ϕ ) , 1 r ( ∂ F r ∂ ϕ − ∂ ( F ϕ r ) ∂ r ) , 1 r ( ∂ ( F θ r ) ∂ r − ∂ F r ∂ θ ) )
\nabla \times \mathbf{F} = \left( \frac{1}{r \sin \theta} \left( \frac{\partial (F_\phi \sin \theta)}{\partial \theta} - \frac{\partial F_\theta}{\partial \phi} \right), \frac{1}{r} \left( \frac{\partial F_r}{\partial \phi} - \frac{\partial (F_\phi r)}{\partial r} \right), \frac{1}{r} \left( \frac{\partial (F_\theta r)}{\partial r} - \frac{\partial F_r}{\partial \theta} \right) \right)
∇ × F = ( r s i n θ 1 ​ ( ∂ θ ∂ ( F ϕ ​ s i n θ ) ​ − ∂ ϕ ∂ F θ ​ ​ ) , r 1 ​ ( ∂ ϕ ∂ F r ​ ​ − ∂ r ∂ ( F ϕ ​ r ) ​ ) , r 1 ​ ( ∂ r ∂ ( F θ ​ r ) ​ − ∂ θ ∂ F r ​ ​ ) )
Dove F_r = r^2 \sin \theta F r = r 2 sin ⁡ θ F_r = r^2 \sin \theta F r ​ = r 2 sin θ , F_\theta = r^2 \cos \theta F θ = r 2 cos ⁡ θ F_\theta = r^2 \cos \theta F θ ​ = r 2 cos θ , e F_\phi = z F ϕ = z F_\phi = z F ϕ ​ = z .
Calcoliamo ciascun componente:
Primo componente :
\frac{1}{r \sin \theta} \left( \frac{\partial (z \sin \theta)}{\partial \theta} - \frac{\partial (r^2 \cos \theta)}{\partial \phi} \right) = \frac{1}{r \sin \theta} \left( z \cos \theta - 0 \right) = \frac{z \cos \theta}{r \sin \theta}
1 r sin ⁡ θ ( ∂ ( z sin ⁡ θ ) ∂ θ − ∂ ( r 2 cos ⁡ θ ) ∂ ϕ ) = 1 r sin ⁡ θ ( z cos ⁡ θ − 0 ) = z cos ⁡ θ r sin ⁡ θ
\frac{1}{r \sin \theta} \left( \frac{\partial (z \sin \theta)}{\partial \theta} - \frac{\partial (r^2 \cos \theta)}{\partial \phi} \right) = \frac{1}{r \sin \theta} \left( z \cos \theta - 0 \right) = \frac{z \cos \theta}{r \sin \theta}
r s i n θ 1 ​ ( ∂ θ ∂ ( z s i n θ ) ​ − ∂ ϕ ∂ ( r 2 c o s θ ) ​ ) = r s i n θ 1 ​ ( z cos θ − 0 ) = r s i n θ z c o s θ ​
Secondo componente :
\frac{1}{r} \left( \frac{\partial (r^2 \sin \theta)}{\partial \phi} - \frac{\partial (z r)}{\partial r} \right) = \frac{1}{r} \left( 0 - z \right) = -\frac{z}{r}
1 r ( ∂ ( r 2 sin ⁡ θ ) ∂ ϕ − ∂ ( z r ) ∂ r ) = 1 r ( 0 − z ) = − z r
\frac{1}{r} \left( \frac{\partial (r^2 \sin \theta)}{\partial \phi} - \frac{\partial (z r)}{\partial r} \right) = \frac{1}{r} \left( 0 - z \right) = -\frac{z}{r}
r 1 ​ ( ∂ ϕ ∂ ( r 2 s i n θ ) ​ − ∂ r ∂ ( zr ) ​ ) = r 1 ​ ( 0 − z ) = − r z ​
Terzo componente :
\frac{1}{r} \left( \frac{\partial (r^2 \cos \theta) r}{\partial r} - \frac{\partial (r^2 \sin \theta)}{\partial \theta} \right) = \frac{1}{r} \left( 2r \cos \theta - r^2 \cos \theta \right) = \frac{2 \cos \theta - r \cos \theta}{r} = \frac{\cos \theta (2 - r)}{r}
1 r ( ∂ ( r 2 cos ⁡ θ ) r ∂ r − ∂ ( r 2 sin ⁡ θ ) ∂ θ ) = 1 r ( 2 r cos ⁡ θ − r 2 cos ⁡ θ ) = 2 cos ⁡ θ − r cos ⁡ θ r = cos ⁡ θ ( 2 − r ) r
\frac{1}{r} \left( \frac{\partial (r^2 \cos \theta) r}{\partial r} - \frac{\partial (r^2 \sin \theta)}{\partial \theta} \right) = \frac{1}{r} \left( 2r \cos \theta - r^2 \cos \theta \right) = \frac{2 \cos \theta - r \cos \theta}{r} = \frac{\cos \theta (2 - r)}{r}
r 1 ​ ( ∂ r ∂ ( r 2 c o s θ ) r ​ − ∂ θ ∂ ( r 2 s i n θ ) ​ ) = r 1 ​ ( 2 r cos θ − r 2 cos θ ) = r 2 c o s θ − r c o s θ ​ = r c o s θ ( 2 − r ) ​
Quindi, il rotore del campo vettoriale in coordinate sferiche è:
\nabla \times \mathbf{F} = \left( \frac{z \cos \theta}{r \sin \theta}, -\frac{z}{r}, \frac{\cos \theta (2 - r)}{r} \right)
∇ × F = ( z cos ⁡ θ r sin ⁡ θ , − z r , cos ⁡ θ ( 2 − r ) r )
\nabla \times \mathbf{F} = \left( \frac{z \cos \theta}{r \sin \theta}, -\frac{z}{r}, \frac{\cos \theta (2 - r)}{r} \right)
∇ × F = ( r s i n θ z c o s θ ​ , − r z ​ , r c o s θ ( 2 − r ) ​ )
English version
Rotor Exercises
Definition
The rotor is an operator that measures the tendency of a vector field to rotate around a point. It is defined for three-dimensional vector fields and is denoted by the symbol \nabla \times \mathbf{F} ∇ × F \nabla \times \mathbf{F} ∇ × F , where \mathbf{F} F \mathbf{F} F is a vector field.
If \mathbf{F} = (F_x, F_y, F_z) F = ( F x , F y , F z ) \mathbf{F} = (F_x, F_y, F_z) F = ( F x ​ , F y ​ , F z ​ ) is a vector field defined in a three-dimensional space, the rotor of \mathbf{F} F \mathbf{F} F is given by:
\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix} ∇ × F = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F y F z ∣ \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix} ∇ × F = ​ i ∂ x ∂ ​ F x ​ ​ j ∂ y ∂ ​ F y ​ ​ k ∂ z ∂ ​ F z ​ ​ ​
Where:
\mathbf{i}, \mathbf{j}, \mathbf{k} i , j , k \mathbf{i}, \mathbf{j}, \mathbf{k} i , j , k are the vectors of the Cartesian coordinates,
F_x, F_y, F_z F x , F y , F z F_x, F_y, F_z F x ​ , F y ​ , F z ​ are the components of the vector field \mathbf{F} F \mathbf{F} F .
Expanding the determinant, we get:
\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial_x} {\partial y} \right) ∇ × F = ( ∂ F z ∂ y − ∂ F y ∂ z , ∂ F x ∂ z − ∂ F z ∂ x , ∂ F y ∂ x − ∂ x ∂ y ) \nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial_x} {\partial y} \right) ∇ × F = ( ∂ y ∂ F z ​ ​ − ∂ z ∂ F y ​ ​ , ∂ z ∂ F x ​ ​ − ∂ x ∂ F z ​ ​ , ∂ x ∂ F y ​ ​ − ∂ y ∂ x ​ ​ )
Rotor Properties
Linearity : The rotor is a linear operator. If \mathbf{F} F \mathbf{F} F and \mathbf{G} G \mathbf{G} G are vector fields and a a a a is a constant, then:
\nabla \times (a\mathbf{F} + \mathbf{G}) = a(\nabla \times \mathbf{F}) + (\nabla \times \mathbf{G}) ∇ × ( a F + G ) = a ( ∇ × F ) + ( ∇ × G ) \nabla \times (a\mathbf{F} + \mathbf{G}) = a(\nabla \times \mathbf{F}) + (\nabla \times \mathbf{G}) ∇ × ( a F + G ) = a ( ∇ × F ) + ( ∇ × G )
Roost of a Gradient : The roost of the gradient of a scalar function is always zero:
\nabla \times (\nabla f) = 0 ∇ × ( ∇ f ) = 0 \nabla \times (\nabla f) = 0 ∇ × ( ∇ f ) = 0
This implies that conservative fields (fields arising from a scalar potential) have a zero roost.
Rotor of a Constant Vector Field : If \mathbf{F} F \mathbf{F} F is a constant vector field, then:
\nabla \times \mathbf{F} = 0 ∇ × F = 0 \nabla \times \mathbf{F} = 0 ∇ × F = 0
Applications of the Rotor
Fluid Dynamics : In fluid dynamics, the rotor of a velocity field represents the vorticity of the fluid. A velocity field with a non-zero rotor indicates the presence of vortices and turbulence.
Electromagnetism : In Maxwell's equations, the rotor of the electric and magnetic fields is used to describe how electric and magnetic fields interact and propagate. For example, Faraday's law of electromagnetic induction is expressed as:
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} ∇ × E = − ∂ B ∂ t \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} ∇ × E = − ∂ t ∂ B ​
Mechanical Engineering : The rotor is used to analyze the behavior of mechanical systems and to study the rotational motion of rigid bodies.
Exercises
Exercise 1: Calculating the Rotor
Calculate the rotor of the vector field \mathbf{F} = (y^2, x^2, z) F = ( y 2 , x 2 , z ) \mathbf{F} = (y^2, x^2, z) F = ( y 2 , x 2 , z ) .
Solution : We use the rotor formula:
\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^2 & x^2 & z \end{vmatrix} ∇ × F = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z y 2 x 2 z ∣ \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^2 & x^2 & z \end{vmatrix} ∇ × F = ​ i ∂ x ∂ ​ y 2 ​ j ∂ y ∂ ​ x 2 ​ k ∂ z ∂ ​ z ​ ​
Expanding the determinant, we get:
\nabla \times \mathbf{F} = \left( \frac{\partial z}{\partial y} - \frac{\partial x^2}{\partial z}, \frac{\partial y^2}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial x^2}{\partial x} - \frac{\partial y^2}{\partial y} \right) ∇ × F = ( ∂ z ∂ y − ∂ x 2 ∂ z , ∂ y 2 ∂ z − ∂ z ∂ x , ∂ x 2 ∂ x − ∂ y 2 ∂ y ) \nabla \times \mathbf{F} = \left( \frac{\partial z}{\partial y} - \frac{\partial x^2}{\partial z}, \frac{\partial y^2}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial x^2}{\partial x} - \frac{\partial y^2}{\partial y} \right) ∇ × F = ( ∂ y ∂ z ​ − ∂ z ∂ x 2 ​ , ∂ z ∂ y 2 ​ − ∂ x ∂ z ​ , ∂ x ∂ x 2 ​ − ∂ y ∂ y 2 ​ )
Calculating the partial derivatives:
\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 2 - 2 \right) = (0, 0, 0) ∇ × F = ( 0 − 0 , 0 − 0 , 2 − 2 ) = ( 0 , 0 , 0 ) \nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 2 - 2 \right) = (0, 0, 0) ∇ × F = ( 0 − 0 , 0 − 0 , 2 − 2 ) = ( 0 , 0 , 0 )
So, the curl of the vector field is zero.
Exercise 2: Curl in a Vortex Field
Calculate the curl of the vector field \mathbf{F} = (-y, x, 0) F = ( − y , x , 0 ) \mathbf{F} = (-y, x, 0) F = ( − y , x , 0 ) .
Solution :
We use the rotor formula:
\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & \end{vmatrix} ∇ × F = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z − y x ∣ \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & \end{vmatrix} ∇ × F = ​ i ∂ x ∂ ​ − y ​ j ∂ y ∂ ​ x ​ k ∂ z ∂ ​ ​ ​
Expanding the determinant, we get:
\nabla \times \mathbf{F} = \left( \frac{\partial (0)}{\partial y} - \frac{\partial (x)}{\partial z}, \frac{\partial (-y)}{\partial z} - \frac{\partial (0)}{\partial x}, \frac{\partial (x)}{\partial x} - \frac{\partial (-y)}{\partial y} \right) ∇ × F = ( ∂ ( 0 ) ∂ y − ∂ ( x ) ∂ z , ∂ ( − y ) ∂ z − ∂ ( 0 ) ∂ x , ∂ ( x ) ∂ x − ∂ ( − y ) ∂ y ) \nabla \times \mathbf{F} = \left( \frac{\partial (0)}{\partial y} - \frac{\partial (x)}{\partial z}, \frac{\partial (-y)}{\partial z} - \frac{\partial (0)}{\partial x}, \frac{\partial (x)}{\partial x} - \frac{\partial (-y)}{\partial y} \right) ∇ × F = ( ∂ y ∂ ( 0 ) ​ − ∂ z ∂ ( x ) ​ , ∂ z ∂ ( − y ) ​ − ∂ x ∂ ( 0 ) ​ , ∂ x ∂ ( x ) ​ − ∂ y ∂ ( − y ) ​ )
Calculating the partial derivatives:
\frac{\partial (0)}{\partial y} = 0 ∂ ( 0 ) ∂ y = 0 \frac{\partial (0)}{\partial y} = 0 ∂ y ∂ ( 0 ) ​ = 0
\frac{\partial (x)}{\partial z} = 0 ∂ ( x ) ∂ z = 0 \frac{\partial (x)}{\partial z} = 0 ∂ z ∂ ( x ) ​ = 0
\frac{\partial (-y)}{\ partial z} = 0 ∂ ( − y ) p a r t i a l z = 0 \frac{\partial (-y)}{\ partial z} = 0 p a r t ia l z ∂ ( − y ) ​ = 0
\frac{\partial (0)}{\partial x} = 0 ∂ ( 0 ) ∂ x = 0 \frac{\partial (0)}{\partial x} = 0 ∂ x ∂ ( 0 ) ​ = 0
\frac{\partial (x)}{\partial x} = 1 ∂ ( x ) ∂ x = 1 \frac{\partial (x)}{\partial x} = 1 ∂ x ∂ ( x ) ​ = 1
\frac{\partial (-y)}{\partial y} = -1 ∂ ( − y ) ∂ y = − 1 \frac{\partial (-y)}{\partial y} = -1 ∂ y ∂ ( − y ) ​ = − 1
Substituting the results:
\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 1 - (-1) \right) = (0, 0, 2) ∇ × F = ( 0 − 0 , 0 − 0 , 1 − ( − 1 ) ) = ( 0 , 0 , 2 ) \nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 1 - (-1) \right) = (0, 0, 2) ∇ × F = ( 0 − 0 , 0 − 0 , 1 − ( − 1 ) ) = ( 0 , 0 , 2 )
So, the curl of the vector field \mathbf{F} = (-y, x, 0) F = ( − y , x , 0 ) \mathbf{F} = (-y, x, 0) F = ( − y , x , 0 ) is:
\nabla \times \mathbf{F} = (0, 0, 2) ∇ × F = ( 0 , 0 , 2 ) \nabla \times \mathbf{F} = (0, 0, 2) ∇ × F = ( 0 , 0 , 2 )
Exercise 3: Computing the Curl of a Vector Field
Compute the curl of the vector field \mathbf{F} = (2xy, x^2, z) F = ( 2 x y , x 2 , z ) \mathbf{F} = (2xy, x^2, z) F = ( 2 x y , x 2 , z ) .
Solution:
We use the rotor formula in Cartesian coordinates:
\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) ∇ × F = ( ∂ F z ∂ y − ∂ F y ∂ z , ∂ F x ∂ z − ∂ F z ∂ x , ∂ F y ∂ x − ∂ F x ∂ y ) \nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) ∇ × F = ( ∂ y ∂ F z ​ ​ − ∂ z ∂ F y ​ ​ , ∂ z ∂ F x ​ ​ − ∂ x ∂ F z ​ ​ , ∂ x ∂ F y ​ ​ − ∂ y ∂ F x ​ ​ )
We calculate each component:
First component :
\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial (x^2)}{\partial z} = 0 - 0 = 0 ∂ F z ∂ y − ∂ F y ∂ z = ∂ z ∂ y − ∂ ( x 2 ) ∂ z = 0 − 0 = 0 \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial (x^2)}{\partial z} = 0 - 0 = 0 ∂ y ∂ F z ​ ​ − ∂ z ∂ F y ​ ​ = ∂ y ∂ z ​ − ∂ z ∂ ( x 2 ) ​ = 0 − 0 = 0
Second component :
\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial (2xy)}{\partial z} - \frac{\partial z}{\partial x} = 0 - 0 = 0 ∂ F x ∂ z − ∂ F z ∂ x = ∂ ( 2 x y ) ∂ z − ∂ z ∂ x = 0 − 0 = 0 \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial (2xy)}{\partial z} - \frac{\partial z}{\partial x} = 0 - 0 = 0 ∂ z ∂ F x ​ ​ − ∂ x ∂ F z ​ ​ = ∂ z ∂ ( 2 x y ) ​ − ∂ x ∂ z ​ = 0 − 0 = 0
Third component :
\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (x^2)}{\partial x} - \frac{\partial (2xy)}{\partial y} = 2x - 2x = 0 ∂ F y ∂ x − ∂ F x ∂ y = ∂ ( x 2 ) ∂ x − ∂ ( 2 x y ) ∂ y = 2 x − 2 x = 0 \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (x^2)}{\partial x} - \frac{\partial (2xy)}{\partial y} = 2x - 2x = 0 ∂ x ∂ F y ​ ​ − ∂ y ∂ F x ​ ​ = ∂ x ∂ ( x 2 ) ​ − ∂ y ∂ ( 2 x y ) ​ = 2 x − 2 x = 0
Therefore, the rotor is:
\nabla \times \mathbf{F} = (0, 0, 0)
∇ × F = ( 0 , 0 , 0 )
\nabla \times \mathbf{F} = (0, 0, 0)
∇ × F = ( 0 , 0 , 0 )
Exercise 4: Curl of a Vector Field in Polar Coordinates
Calculate the curl of the vector field \mathbf{F} = (0, r^2, 0) F = ( 0 , r 2 , 0 ) \mathbf{F} = (0, r^2, 0) F = ( 0 , r 2 , 0 ) in polar coordinates.
Solution:
In polar coordinates, the rotor is given by:
\nabla \times \mathbf{F} = \left( \frac{1}{r} \frac{\partial (r F_z)}{\partial r} - \frac{\partial F_r}{\partial z}, \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r}, \frac{1}{r } \frac{\partial (r F_\theta)}{\partial r} - \frac{1}{r} \frac{\partial F_r}{\partial \theta} \right) ∇ × F = ( 1 r ∂ ( r F z ) ∂ r − ∂ F r ∂ z , ∂ F r ∂ z − ∂ F z ∂ r , 1 r ∂ ( r F θ ) ∂ r − 1 r ∂ F r ∂ θ ) \nabla \times \mathbf{F} = \left( \frac{1}{r} \frac{\partial (r F_z)}{\partial r} - \frac{\partial F_r}{\partial z}, \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r}, \frac{1}{r } \frac{\partial (r F_\theta)}{\partial r} - \frac{1}{r} \frac{\partial F_r}{\partial \theta} \right) ∇ × F = ( r 1 ​ ∂ r ∂ ( r F z ​ ) ​ − ∂ z ∂ F r ​ ​ , ∂ z ∂ F r ​ ​ − ∂ r ∂ F z ​ ​ , r 1 ​ ∂ r ∂ ( r F θ ​ ) ​ − r 1 ​ ∂ θ ∂ F r ​ ​ )
Where F_r = 0 F r = 0 F_r = 0 F r ​ = 0 , F_\theta = r^2 F θ = r 2 F_\theta = r^2 F θ ​ = r 2 , and F_z = 0 F z = 0 F_z = 0 F z ​ = 0 .
Let's calculate each component:
First component :
\frac{1}{r} \frac{\partial (r \cdot 0)}{\partial r} - \frac{\partial (0)}{\partial z} = 0 - 0 = 0 1 r ∂ ( r ⋅ 0 ) ∂ r − ∂ ( 0 ) ∂ z = 0 − 0 = 0 \frac{1}{r} \frac{\partial (r \cdot 0)}{\partial r} - \frac{\partial (0)}{\partial z} = 0 - 0 = 0 r 1 ​ ∂ r ∂ ( r ⋅ 0 ) ​ − ∂ z ∂ ( 0 ) ​ = 0 − 0 = 0
Second component :
\frac{\partial (0)}{\partial z} - \frac{\partial (0)}{\partial r} = 0 ∂ ( 0 ) ∂ z − ∂ ( 0 ) ∂ r = 0 \frac{\partial (0)}{\partial z} - \frac{\partial (0)}{\partial r} = 0 ∂ z ∂ ( 0 ) ​ − ∂ r ∂ ( 0 ) ​ = 0
Third component :
\frac{1}{r} \frac{\partial (r \cdot r^2)}{\partial r} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} = \frac{1}{r} \frac{\partial (r^3)}{\partial r} - 0 = \frac{1}{r} \cdot 3r^2 = 3r
1 r ∂ ( r ⋅ r 2 ) ∂ r − 1 r ∂ ( 0 ) ∂ θ = 1 r ∂ ( r 3 ) ∂ r − 0 = 1 r ⋅ 3 r 2 = 3 r \frac{1}{r} \frac{\partial (r \cdot r^2)}{\partial r} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} = \frac{1}{r} \frac{\partial (r^3)}{\partial r} - 0 = \frac{1}{r} \cdot 3r^2 = 3r
r 1 ​ ∂ r ∂ ( r ⋅ r 2 ) ​ − r 1 ​ ∂ θ ∂ ( 0 ) ​ = r 1 ​ ∂ r ∂ ( r 3 ) ​ − 0 = r 1 ​ ⋅ 3 r 2 = 3 r
So, the curl of the vector field in polar coordinates is:
\nabla \times \mathbf{F} = (0, 0, 3r)
∇ × F = ( 0 , 0 , 3 r )
\nabla \times \mathbf{F} = (0, 0, 3r)
∇ × F = ( 0 , 0 , 3 r )
Exercise 5: Curl of a Vector Field in Spherical Coordinates
Calculate the curl of the vector field \mathbf{F} = (r^2 \sin \theta, r^2 \cos \theta, z) F = ( r 2 sin ⁡ θ , r 2 cos ⁡ θ , z ) \mathbf{F} = (r^2 \sin \theta, r^2 \cos \theta, z) F = ( r 2 sin θ , r 2 cos θ , z ) in spherical coordinates.
Solution:
In spherical coordinates, the rotor is given by:
\nabla \times \mathbf{F} = \left( \frac{1}{r \sin \theta} \left( \frac{\partial (F_\phi \sin \theta)}{\partial \theta} - \frac{\partial F_\theta}{\partial \phi} \right), \frac{1}{r} \left( \frac{\partial F_r}{\partial \phi} - \frac{\partial (F_\phi r)}{\partial r} \right), \frac{1}{r} \left( \frac{\partial (F_\theta r)}{\partial r} - \frac{\partial F_r}{\partial \theta} \right) \right) ∇ × F = ( 1 r sin ⁡ θ ( ∂ ( F ϕ sin ⁡ θ ) ∂ θ − ∂ F θ ∂ ϕ ) , 1 r ( ∂ F r ∂ ϕ − ∂ ( F ϕ r ) ∂ r ) , 1 r ( ∂ ( F θ r ) ∂ r − ∂ F r ∂ θ ) ) \nabla \times \mathbf{F} = \left( \frac{1}{r \sin \theta} \left( \frac{\partial (F_\phi \sin \theta)}{\partial \theta} - \frac{\partial F_\theta}{\partial \phi} \right), \frac{1}{r} \left( \frac{\partial F_r}{\partial \phi} - \frac{\partial (F_\phi r)}{\partial r} \right), \frac{1}{r} \left( \frac{\partial (F_\theta r)}{\partial r} - \frac{\partial F_r}{\partial \theta} \right) \right) ∇ × F = ( r s i n θ 1 ​ ( ∂ θ ∂ ( F ϕ ​ s i n θ ) ​ − ∂ ϕ ∂ F θ ​ ​ ) , r 1 ​ ( ∂ ϕ ∂ F r ​ ​ − ∂ r ∂ ( F ϕ ​ r ) ​ ) , r 1 ​ ( ∂ r ∂ ( F θ ​ r ) ​ − ∂ θ ∂ F r ​ ​ ) )
Where F_r = r^2 \sin \theta F r = r 2 sin ⁡ θ F_r = r^2 \sin \theta F r ​ = r 2 sin θ , F_\theta = r^2 \cos \theta F θ = r 2 cos ⁡ θ F_\theta = r^2 \cos \theta F θ ​ = r 2 cos θ , and F_\phi = z F ϕ = z F_\phi = z F ϕ ​ = z .
Let's calculate each component:
First component :
\frac{1}{r \sin \theta} \left( \frac{\partial (z \sin \theta)}{\partial \theta} - \frac{\partial (r^2 \cos \theta)}{\partial \phi} \right) = \frac{1}{r \sin \theta} \left( z \cos \theta - 0 \right) = \frac{z cos \theta}{r \sin \theta} 1 r sin ⁡ θ ( ∂ ( z sin ⁡ θ ) ∂ θ − ∂ ( r 2 cos ⁡ θ ) ∂ ϕ ) = 1 r sin ⁡ θ ( z cos ⁡ θ − 0 ) = z c o s θ r sin ⁡ θ \frac{1}{r \sin \theta} \left( \frac{\partial (z \sin \theta)}{\partial \theta} - \frac{\partial (r^2 \cos \theta)}{\partial \phi} \right) = \frac{1}{r \sin \theta} \left( z \cos \theta - 0 \right) = \frac{z cos \theta}{r \sin \theta} r s i n θ 1 ​ ( ∂ θ ∂ ( z s i n θ ) ​ − ∂ ϕ ∂ ( r 2 c o s θ ) ​ ) = r s i n θ 1 ​ ( z cos θ − 0 ) = r s i n θ zcos θ ​
Second component :
\frac{1}{r} \left( \frac{\partial (r^2 \sin \theta)}{\partial \phi} - \frac{\partial (z r)}{\partial r} \right) = \frac{1}{r} \left( 0 - z \right) = -\frac{z}{r} 1 r ( ∂ ( r 2 sin ⁡ θ ) ∂ ϕ − ∂ ( z r ) ∂ r ) = 1 r ( 0 − z ) = − z r \frac{1}{r} \left( \frac{\partial (r^2 \sin \theta)}{\partial \phi} - \frac{\partial (z r)}{\partial r} \right) = \frac{1}{r} \left( 0 - z \right) = -\frac{z}{r} r 1 ​ ( ∂ ϕ ∂ ( r 2 s i n θ ) ​ − ∂ r ∂ ( zr ) ​ ) = r 1 ​ ( 0 − z ) = − r z ​
Third component :
\frac{1}{r} \left( \frac{\partial (r^2 \cos \theta) r}{\partial r} - \frac{\partial (r^2 \sin \theta)}{\partial \theta} \right) = \frac{1}{r} \left( 2r \cos \theta - r^2 \cos \theta \right) = \frac{2 \cos \theta - r \cos \theta}{r} = \frac{\cos \theta (2 - r)}{r} 1 r ( ∂ ( r 2 cos ⁡ θ ) r ∂ r − ∂ ( r 2 sin ⁡ θ ) ∂ θ ) = 1 r ( 2 r cos ⁡ θ − r 2 cos ⁡ θ ) = 2 cos ⁡ θ − r cos ⁡ θ r = cos ⁡ θ ( 2 − r ) r \frac{1}{r} \left( \frac{\partial (r^2 \cos \theta) r}{\partial r} - \frac{\partial (r^2 \sin \theta)}{\partial \theta} \right) = \frac{1}{r} \left( 2r \cos \theta - r^2 \cos \theta \right) = \frac{2 \cos \theta - r \cos \theta}{r} = \frac{\cos \theta (2 - r)}{r} r 1 ​ ( ∂ r ∂ ( r 2 c o s θ ) r ​ − ∂ θ ∂ ( r 2 s i n θ ) ​ ) = r 1 ​ ( 2 r cos θ − r 2 cos θ ) = r 2 c o s θ − r c o s θ ​ = r c o s θ ( 2 − r ) ​
Thus, the rotor of the vector field in spherical coordinates is: \nabla \times \mathbf{F} = \left( \frac{z \cos \theta}{r \sin \theta}, -\frac{z}{r}, \frac{\cos \theta (2 - r)}{r} \right) ∇ × F = ( z cos ⁡ θ r sin ⁡ θ , − z r , cos ⁡ θ ( 2 − r ) r ) \nabla \times \mathbf{F} = \left( \frac{z \cos \theta}{r \sin \theta}, -\frac{z}{r}, \frac{\cos \theta (2 - r)}{r} \right) ∇ × F = ( r s i n θ z c o s θ ​ , − r z ​ , r c o s θ ( 2 − r ) ​ )
Commenti
Posta un commento