Esercizi sul Rotore

Esercizi sul Rotore +Esercizi sul Rotore
+Esercizi sul Rotore

Versione italiana

Esercizi sul Rotore

Definizione

Il rotore è un operatore che misura la tendenza di un campo vettoriale a ruotare attorno a un punto. È definito per campi vettoriali tridimensionali e viene denotato con il simbolo \nabla \times \mathbf{F}×F\nabla \times \mathbf{F}, dove \mathbf{F}F\mathbf{F} è un campo vettoriale.

Formula

Se \mathbf{F} = (F_x, F_y, F_z)F=(Fx,Fy,Fz)\mathbf{F} = (F_x, F_y, F_z) è un campo vettoriale definito in uno spazio tridimensionale, il rotore di \mathbf{F}F\mathbf{F} è dato da:

\nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_x & F_y & F_z
\end{vmatrix}
×F=ijkxyzFxFyFz\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}

Dove:

  • \mathbf{i}, \mathbf{j}, \mathbf{k}i,j,k\mathbf{i}, \mathbf{j}, \mathbf{k} sono i versori delle coordinate cartesiane,
  • F_x, F_y, F_zFx,Fy,FzF_x, F_y, F_z sono le componenti del campo vettoriale \mathbf{F}F\mathbf{F}.

Espandendo il determinante, otteniamo:

\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)
×F=(FzyFyz,FxzFzx,FyxFxy)\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)

Proprietà del Rotore

  1. Linearità: Il rotore è un operatore lineare. Se \mathbf{F}F\mathbf{F} e \mathbf{G}G\mathbf{G} sono campi vettoriali e aaa è una costante, allora:

    \nabla \times (a\mathbf{F} + \mathbf{G}) = a(\nabla \times \mathbf{F}) + (\nabla \times \mathbf{G})
    ×(aF+G)=a(×F)+(×G)\nabla \times (a\mathbf{F} + \mathbf{G}) = a(\nabla \times \mathbf{F}) + (\nabla \times \mathbf{G})
  2. Rotore di un Gradiente: Il rotore del gradiente di una funzione scalare è sempre zero:

    \nabla \times (\nabla f) = 0
    ×(f)=0\nabla \times (\nabla f) = 0

    Questo implica che i campi conservativi (campi derivanti da un potenziale scalare) hanno un rotore nullo.

  3. Rotore di un Campo Vettoriale Costante: Se \mathbf{F}F\mathbf{F} è un campo vettoriale costante, allora:

    \nabla \times \mathbf{F} = 0
    ×F=0\nabla \times \mathbf{F} = 0

Applicazioni del Rotore

  1. Fluidodinamica: In fluidodinamica, il rotore di un campo di velocità rappresenta la vorticità del fluido. Un campo di velocità con rotore diverso da zero indica la presenza di vortici e turbolenze.

  2. Elettromagnetismo: Nelle equazioni di Maxwell, il rotore del campo elettrico e del campo magnetico è utilizzato per descrivere come i campi elettrici e magnetici interagiscono e si propagano. Ad esempio, la legge di Faraday dell'induzione elettromagnetica è espressa come:

    \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
    ×E=Bt\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
  3. Ingegneria Meccanica: Il rotore è utilizzato per analizzare il comportamento di sistemi meccanici e per studiare il movimento rotatorio di corpi rigidi.

Esercizi

Esercizio 1: Calcolo del Rotore

Calcola il rotore del campo vettoriale \mathbf{F} = (y^2, x^2, z)F=(y2,x2,z)\mathbf{F} = (y^2, x^2, z).

Soluzione:

Utilizziamo la formula del rotore:

\nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^2 & x^2 & z
\end{vmatrix}
×F=ijkxyzy2x2z\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & x^2 & z \end{vmatrix}

Espandendo il determinante, otteniamo:

\nabla \times \mathbf{F} = \left( \frac{\partial z}{\partial y} - \frac{\partial x^2}{\partial z}, \frac{\partial y^2}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial x^2}{\partial x} - \frac{\partial y^2}{\partial y} \right)
×F=(zyx2z,y2zzx,x2xy2y)\nabla \times \mathbf{F} = \left( \frac{\partial z}{\partial y} - \frac{\partial x^2}{\partial z}, \frac{\partial y^2}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial x^2}{\partial x} - \frac{\partial y^2}{\partial y} \right)

Calcolando le derivate parziali:

\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 2 - 2 \right) = (0, 0, 0)
×F=(00,00,22)=(0,0,0)\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 2 - 2 \right) = (0, 0, 0)

Quindi, il rotore del campo vettoriale è zero.

Esercizio 2: Rotore in un Campo Vorticoso

Calcola il rotore del campo vettoriale \mathbf{F} = (-y, x, 0)F=(y,x,0)\mathbf{F} = (-y, x, 0).

Soluzione:

Utilizziamo la formula del rotore:

\nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y & x & 0
\end{vmatrix}
×F=ijkxyzyx0\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & 0 \end{vmatrix}

Espandendo il determinante, otteniamo:

\nabla \times \mathbf{F} = \left( \frac{\partial (0)}{\partial y} - \frac{\partial (x)}{\partial z}, \frac{\partial (-y)}{\partial z} - \frac{\partial (0)}{\partial x}, \frac{\partial (x)}{\partial x} - \frac{\partial (-y)}{\partial y} \right)
×F=((0)y(x)z,(y)z(0)x,(x)x(y)y)\nabla \times \mathbf{F} = \left( \frac{\partial (0)}{\partial y} - \frac{\partial (x)}{\partial z}, \frac{\partial (-y)}{\partial z} - \frac{\partial (0)}{\partial x}, \frac{\partial (x)}{\partial x} - \frac{\partial (-y)}{\partial y} \right)

Calcolando le derivate parziali:

  1. \frac{\partial (0)}{\partial y} = 0(0)y=0\frac{\partial (0)}{\partial y} = 0
  2. \frac{\partial (x)}{\partial z} = 0(x)z=0\frac{\partial (x)}{\partial z} = 0
  3. \frac{\partial (-y)}{\partial z} = 0(y)z=0\frac{\partial (-y)}{\partial z} = 0
  4. \frac{\partial (0)}{\partial x} = 0(0)x=0\frac{\partial (0)}{\partial x} = 0
  5. \frac{\partial (x)}{\partial x} = 1(x)x=1\frac{\partial (x)}{\partial x} = 1
  6. \frac{\partial (-y)}{\partial y} = -1(y)y=1\frac{\partial (-y)}{\partial y} = -1

Sostituendo i risultati:

\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 1 - (-1) \right) = (0, 0, 2)
×F=(00,00,1(1))=(0,0,2)\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 1 - (-1) \right) = (0, 0, 2)

Quindi, il rotore del campo vettoriale \mathbf{F} = (-y, x, 0)F=(y,x,0)\mathbf{F} = (-y, x, 0) è:

\nabla \times \mathbf{F} = (0, 0, 2)
×F=(0,0,2)\nabla \times \mathbf{F} = (0, 0, 2)

Esercizio 3: Calcolo del Rotore di un Campo Vettoriale

Calcola il rotore del campo vettoriale \mathbf{F} = (2xy, x^2, z)F=(2xy,x2,z)\mathbf{F} = (2xy, x^2, z).

Soluzione:

Utilizziamo la formula del rotore in coordinate cartesiane:

\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) ×F=(FzyFyz,FxzFzx,FyxFxy) \nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)

Calcoliamo ciascun componente:

  1. Primo componente:
    \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial (x^2)}{\partial z} = 0 - 0 = 0 FzyFyz=zy(x2)z=00=0 \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial (x^2)}{\partial z} = 0 - 0 = 0

  2. Secondo componente:
    \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial (2xy)}{\partial z} - \frac{\partial z}{\partial x} = 0 - 0 = 0 FxzFzx=(2xy)zzx=00=0 \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial (2xy)}{\partial z} - \frac{\partial z}{\partial x} = 0 - 0 = 0

  3. Terzo componente:
    \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (x^2)}{\partial x} - \frac{\partial (2xy)}{\partial y} = 2x - 2x = 0 FyxFxy=(x2)x(2xy)y=2x2x=0 \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (x^2)}{\partial x} - \frac{\partial (2xy)}{\partial y} = 2x - 2x = 0

Quindi, il rotore è:

\nabla \times \mathbf{F} = (0, 0, 0) ×F=(0,0,0) \nabla \times \mathbf{F} = (0, 0, 0)

Esercizio 4: Rotore di un Campo Vettoriale in Coordinate Polari

Calcola il rotore del campo vettoriale \mathbf{F} = (0, r^2, 0)F=(0,r2,0)\mathbf{F} = (0, r^2, 0) in coordinate polari.

Soluzione:

In coordinate polari, il rotore è dato da:

\nabla \times \mathbf{F} = \left( \frac{1}{r} \frac{\partial (r F_z)}{\partial r} - \frac{\partial F_r}{\partial z}, \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r}, \frac{1}{r} \frac{\partial (r F_\theta)}{\partial r} - \frac{1}{r} \frac{\partial F_r}{\partial \theta} \right) ×F=(1r(rFz)rFrz,FrzFzr,1r(rFθ)r1rFrθ) \nabla \times \mathbf{F} = \left( \frac{1}{r} \frac{\partial (r F_z)}{\partial r} - \frac{\partial F_r}{\partial z}, \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r}, \frac{1}{r} \frac{\partial (r F_\theta)}{\partial r} - \frac{1}{r} \frac{\partial F_r}{\partial \theta} \right)

Dove F_r = 0Fr=0F_r = 0, F_\theta = r^2Fθ=r2F_\theta = r^2, e F_z = 0Fz=0F_z = 0.

Calcoliamo ciascun componente:

  1. Primo componente:
    \frac{1}{r} \frac{\partial (r \cdot 0)}{\partial r} - \frac{\partial (0)}{\partial z} = 0 - 0 = 0 1r(r0)r(0)z=00=0 \frac{1}{r} \frac{\partial (r \cdot 0)}{\partial r} - \frac{\partial (0)}{\partial z} = 0 - 0 = 0

  2. Secondo componente:
    \frac{\partial (0)}{\partial z} - \frac{\partial (0)}{\partial r} = 0 (0)z(0)r=0 \frac{\partial (0)}{\partial z} - \frac{\partial (0)}{\partial r} = 0

  3. Terzo componente:
    \frac{1}{r} \frac{\partial (r \cdot r^2)}{\partial r} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} = \frac{1}{r} \frac{\partial (r^3)}{\partial r} - 0 = \frac{1}{r} \cdot 3r^2 = 3r 1r(rr2)r1r(0)θ=1r(r3)r0=1r3r2=3r \frac{1}{r} \frac{\partial (r \cdot r^2)}{\partial r} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} = \frac{1}{r} \frac{\partial (r^3)}{\partial r} - 0 = \frac{1}{r} \cdot 3r^2 = 3r

Quindi, il rotore del campo vettoriale in coordinate polari è:

\nabla \times \mathbf{F} = (0, 0, 3r) ×F=(0,0,3r) \nabla \times \mathbf{F} = (0, 0, 3r)

Esercizio 5: Rotore di un Campo Vettoriale in Coordinate Sferiche

Calcola il rotore del campo vettoriale \mathbf{F} = (r^2 \sin \theta, r^2 \cos \theta, z)F=(r2sinθ,r2cosθ,z)\mathbf{F} = (r^2 \sin \theta, r^2 \cos \theta, z) in coordinate sferiche.

Soluzione:

In coordinate sferiche, il rotore è dato da:

\nabla \times \mathbf{F} = \left( \frac{1}{r \sin \theta} \left( \frac{\partial (F_\phi \sin \theta)}{\partial \theta} - \frac{\partial F_\theta}{\partial \phi} \right), \frac{1}{r} \left( \frac{\partial F_r}{\partial \phi} - \frac{\partial (F_\phi r)}{\partial r} \right), \frac{1}{r} \left( \frac{\partial (F_\theta r)}{\partial r} - \frac{\partial F_r}{\partial \theta} \right) \right) ×F=(1rsinθ((Fϕsinθ)θFθϕ),1r(Frϕ(Fϕr)r),1r((Fθr)rFrθ)) \nabla \times \mathbf{F} = \left( \frac{1}{r \sin \theta} \left( \frac{\partial (F_\phi \sin \theta)}{\partial \theta} - \frac{\partial F_\theta}{\partial \phi} \right), \frac{1}{r} \left( \frac{\partial F_r}{\partial \phi} - \frac{\partial (F_\phi r)}{\partial r} \right), \frac{1}{r} \left( \frac{\partial (F_\theta r)}{\partial r} - \frac{\partial F_r}{\partial \theta} \right) \right)

Dove F_r = r^2 \sin \thetaFr=r2sinθF_r = r^2 \sin \theta, F_\theta = r^2 \cos \thetaFθ=r2cosθF_\theta = r^2 \cos \theta, e F_\phi = zFϕ=zF_\phi = z.

Calcoliamo ciascun componente:

  1. Primo componente:
    \frac{1}{r \sin \theta} \left( \frac{\partial (z \sin \theta)}{\partial \theta} - \frac{\partial (r^2 \cos \theta)}{\partial \phi} \right) = \frac{1}{r \sin \theta} \left( z \cos \theta - 0 \right) = \frac{z \cos \theta}{r \sin \theta} 1rsinθ((zsinθ)θ(r2cosθ)ϕ)=1rsinθ(zcosθ0)=zcosθrsinθ \frac{1}{r \sin \theta} \left( \frac{\partial (z \sin \theta)}{\partial \theta} - \frac{\partial (r^2 \cos \theta)}{\partial \phi} \right) = \frac{1}{r \sin \theta} \left( z \cos \theta - 0 \right) = \frac{z \cos \theta}{r \sin \theta}

  2. Secondo componente:
    \frac{1}{r} \left( \frac{\partial (r^2 \sin \theta)}{\partial \phi} - \frac{\partial (z r)}{\partial r} \right) = \frac{1}{r} \left( 0 - z \right) = -\frac{z}{r} 1r((r2sinθ)ϕ(zr)r)=1r(0z)=zr \frac{1}{r} \left( \frac{\partial (r^2 \sin \theta)}{\partial \phi} - \frac{\partial (z r)}{\partial r} \right) = \frac{1}{r} \left( 0 - z \right) = -\frac{z}{r}

  3. Terzo componente:
    \frac{1}{r} \left( \frac{\partial (r^2 \cos \theta) r}{\partial r} - \frac{\partial (r^2 \sin \theta)}{\partial \theta} \right) = \frac{1}{r} \left( 2r \cos \theta - r^2 \cos \theta \right) = \frac{2 \cos \theta - r \cos \theta}{r} = \frac{\cos \theta (2 - r)}{r} 1r((r2cosθ)rr(r2sinθ)θ)=1r(2rcosθr2cosθ)=2cosθrcosθr=cosθ(2r)r \frac{1}{r} \left( \frac{\partial (r^2 \cos \theta) r}{\partial r} - \frac{\partial (r^2 \sin \theta)}{\partial \theta} \right) = \frac{1}{r} \left( 2r \cos \theta - r^2 \cos \theta \right) = \frac{2 \cos \theta - r \cos \theta}{r} = \frac{\cos \theta (2 - r)}{r}

Quindi, il rotore del campo vettoriale in coordinate sferiche è:

\nabla \times \mathbf{F} = \left( \frac{z \cos \theta}{r \sin \theta}, -\frac{z}{r}, \frac{\cos \theta (2 - r)}{r} \right) ×F=(zcosθrsinθ,zr,cosθ(2r)r) \nabla \times \mathbf{F} = \left( \frac{z \cos \theta}{r \sin \theta}, -\frac{z}{r}, \frac{\cos \theta (2 - r)}{r} \right)

English version

Rotor Exercises

Definition

The rotor is an operator that measures the tendency of a vector field to rotate around a point. It is defined for three-dimensional vector fields and is denoted by the symbol \nabla \times \mathbf{F}×F\nabla \times \mathbf{F}, where \mathbf{F}F\mathbf{F} is a vector field.

Formula

If \mathbf{F} = (F_x, F_y, F_z)F=(Fx,Fy,Fz)\mathbf{F} = (F_x, F_y, F_z) is a vector field defined in a three-dimensional space, the rotor of \mathbf{F}F\mathbf{F} is given by:

\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix} 
×F=ijkxyzFxFyFz\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}

Where:

  • \mathbf{i}, \mathbf{j}, \mathbf{k}i,j,k\mathbf{i}, \mathbf{j}, \mathbf{k} are the vectors of the Cartesian coordinates,
  • F_x, F_y, F_zFx,Fy,FzF_x, F_y, F_z are the components of the vector field \mathbf{F}F\mathbf{F}.

Expanding the determinant, we get:

\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial_x} {\partial y} \right) 
×F=(FzyFyz,FxzFzx,Fyxxy)\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial_x} {\partial y} \right)

Rotor Properties

  1. Linearity: The rotor is a linear operator. If \mathbf{F}F\mathbf{F} and \mathbf{G}G\mathbf{G} are vector fields and aaa is a constant, then:
\nabla \times (a\mathbf{F} + \mathbf{G}) = a(\nabla \times \mathbf{F}) + (\nabla \times \mathbf{G})
×(aF+G)=a(×F)+(×G)\nabla \times (a\mathbf{F} + \mathbf{G}) = a(\nabla \times \mathbf{F}) + (\nabla \times \mathbf{G})
  1. Roost of a Gradient: The roost of the gradient of a scalar function is always zero:
\nabla \times (\nabla f) = 0
×(f)=0\nabla \times (\nabla f) = 0

This implies that conservative fields (fields arising from a scalar potential) have a zero roost.

  1. Rotor of a Constant Vector Field: If \mathbf{F}F\mathbf{F} is a constant vector field, then:
\nabla \times \mathbf{F} = 0
×F=0\nabla \times \mathbf{F} = 0

Applications of the Rotor

  1. Fluid Dynamics: In fluid dynamics, the rotor of a velocity field represents the vorticity of the fluid. A velocity field with a non-zero rotor indicates the presence of vortices and turbulence.

  2. Electromagnetism: In Maxwell's equations, the rotor of the electric and magnetic fields is used to describe how electric and magnetic fields interact and propagate. For example, Faraday's law of electromagnetic induction is expressed as:

\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
×E=Bt\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
  1. Mechanical Engineering: The rotor is used to analyze the behavior of mechanical systems and to study the rotational motion of rigid bodies.

Exercises

Exercise 1: Calculating the Rotor

Calculate the rotor of the vector field \mathbf{F} = (y^2, x^2, z)F=(y2,x2,z)\mathbf{F} = (y^2, x^2, z).

Solution: We use the rotor formula:

\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 
y^2 & x^2 & z \end{vmatrix}
×F=ijkxyzy2x2z\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & x^2 & z \end{vmatrix}

Expanding the determinant, we get:

 \nabla \times \mathbf{F} = \left( \frac{\partial z}{\partial y} - \frac{\partial x^2}{\partial z}, \frac{\partial y^2}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial x^2}{\partial x} - \frac{\partial y^2}{\partial y} \right)
×F=(zyx2z,y2zzx,x2xy2y) \nabla \times \mathbf{F} = \left( \frac{\partial z}{\partial y} - \frac{\partial x^2}{\partial z}, \frac{\partial y^2}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial x^2}{\partial x} - \frac{\partial y^2}{\partial y} \right)

Calculating the partial derivatives:

\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 2 - 2 \right) = (0, 0, 0)
×F=(00,00,22)=(0,0,0)\nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 2 - 2 \right) = (0, 0, 0)

So, the curl of the vector field is zero.

Exercise 2: Curl in a Vortex Field

Calculate the curl of the vector field \mathbf{F} = (-y, x, 0)F=(y,x,0)\mathbf{F} = (-y, x, 0).

Solution:
We use the rotor formula:

\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & \end{vmatrix} 
×F=ijkxyzyx\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & \end{vmatrix}

Expanding the determinant, we get:

\nabla \times \mathbf{F} = \left( \frac{\partial (0)}{\partial y} - \frac{\partial (x)}{\partial z}, \frac{\partial (-y)}{\partial z} - \frac{\partial (0)}{\partial x}, \frac{\partial (x)}{\partial x} - \frac{\partial (-y)}{\partial y} \right) 
×F=((0)y(x)z,(y)z(0)x,(x)x(y)y)\nabla \times \mathbf{F} = \left( \frac{\partial (0)}{\partial y} - \frac{\partial (x)}{\partial z}, \frac{\partial (-y)}{\partial z} - \frac{\partial (0)}{\partial x}, \frac{\partial (x)}{\partial x} - \frac{\partial (-y)}{\partial y} \right)

Calculating the partial derivatives:

  1. \frac{\partial (0)}{\partial y} = 0(0)y=0\frac{\partial (0)}{\partial y} = 0
  2. \frac{\partial (x)}{\partial z} = 0(x)z=0\frac{\partial (x)}{\partial z} = 0
  3. \frac{\partial (-y)}{\ partial z} = 0(y) partialz=0\frac{\partial (-y)}{\ partial z} = 0
  4. \frac{\partial (0)}{\partial x} = 0(0)x=0\frac{\partial (0)}{\partial x} = 0
  5. \frac{\partial (x)}{\partial x} = 1(x)x=1\frac{\partial (x)}{\partial x} = 1
  6. \frac{\partial (-y)}{\partial y} = -1(y)y=1\frac{\partial (-y)}{\partial y} = -1
    Substituting the results:
 \nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 1 - (-1) \right) = (0, 0, 2)
×F=(00,00,1(1))=(0,0,2) \nabla \times \mathbf{F} = \left( 0 - 0, 0 - 0, 1 - (-1) \right) = (0, 0, 2)

So, the curl of the vector field \mathbf{F} = (-y, x, 0)F=(y,x,0)\mathbf{F} = (-y, x, 0) is:

\nabla \times \mathbf{F} = (0, 0, 2)
×F=(0,0,2)\nabla \times \mathbf{F} = (0, 0, 2)

Exercise 3: Computing the Curl of a Vector Field

Compute the curl of the vector field \mathbf{F} = (2xy, x^2, z)F=(2xy,x2,z)\mathbf{F} = (2xy, x^2, z).

Solution:
We use the rotor formula in Cartesian coordinates:
\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)×F=(FzyFyz,FxzFzx,FyxFxy)\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)
We calculate each component:

  1. First component:
    \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial (x^2)}{\partial z} = 0 - 0 = 0FzyFyz=zy(x2)z=00=0\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial (x^2)}{\partial z} = 0 - 0 = 0
  2. Second component:
    \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial (2xy)}{\partial z} - \frac{\partial z}{\partial x} = 0 - 0 = 0FxzFzx=(2xy)zzx=00=0\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial (2xy)}{\partial z} - \frac{\partial z}{\partial x} = 0 - 0 = 0
  3. Third component :
    \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (x^2)}{\partial x} - \frac{\partial (2xy)}{\partial y} = 2x - 2x = 0FyxFxy=(x2)x(2xy)y=2x2x=0\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (x^2)}{\partial x} - \frac{\partial (2xy)}{\partial y} = 2x - 2x = 0

Therefore, the rotor is:

\nabla \times \mathbf{F} = (0, 0, 0) ×F=(0,0,0) \nabla \times \mathbf{F} = (0, 0, 0)

Exercise 4: Curl of a Vector Field in Polar Coordinates

Calculate the curl of the vector field \mathbf{F} = (0, r^2, 0)F=(0,r2,0)\mathbf{F} = (0, r^2, 0) in polar coordinates.

Solution:
In polar coordinates, the rotor is given by:
\nabla \times \mathbf{F} = \left( \frac{1}{r} \frac{\partial (r F_z)}{\partial r} - \frac{\partial F_r}{\partial z}, \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r}, \frac{1}{r } \frac{\partial (r F_\theta)}{\partial r} - \frac{1}{r} \frac{\partial F_r}{\partial \theta} \right)×F=(1r(rFz)rFrz,FrzFzr,1r(rFθ)r1rFrθ)\nabla \times \mathbf{F} = \left( \frac{1}{r} \frac{\partial (r F_z)}{\partial r} - \frac{\partial F_r}{\partial z}, \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r}, \frac{1}{r } \frac{\partial (r F_\theta)}{\partial r} - \frac{1}{r} \frac{\partial F_r}{\partial \theta} \right)
Where F_r = 0Fr=0F_r = 0, F_\theta = r^2Fθ=r2F_\theta = r^2, and F_z = 0Fz=0F_z = 0.

Let's calculate each component:

  1. First component:
    \frac{1}{r} \frac{\partial (r \cdot 0)}{\partial r} - \frac{\partial (0)}{\partial z} = 0 - 0 = 01r(r0)r(0)z=00=0\frac{1}{r} \frac{\partial (r \cdot 0)}{\partial r} - \frac{\partial (0)}{\partial z} = 0 - 0 = 0
  2. Second component:
    \frac{\partial (0)}{\partial z} - \frac{\partial (0)}{\partial r} = 0(0)z(0)r=0\frac{\partial (0)}{\partial z} - \frac{\partial (0)}{\partial r} = 0
  3. Third component:
    \frac{1}{r} \frac{\partial (r \cdot r^2)}{\partial r} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} = \frac{1}{r} \frac{\partial (r^3)}{\partial r} - 0 = \frac{1}{r} \cdot 3r^2 = 3r 1r(rr2)r1r(0)θ=1r(r3)r0=1r3r2=3r\frac{1}{r} \frac{\partial (r \cdot r^2)}{\partial r} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} = \frac{1}{r} \frac{\partial (r^3)}{\partial r} - 0 = \frac{1}{r} \cdot 3r^2 = 3r

So, the curl of the vector field in polar coordinates is:

\nabla \times \mathbf{F} = (0, 0, 3r) ×F=(0,0,3r) \nabla \times \mathbf{F} = (0, 0, 3r)

Exercise 5: Curl of a Vector Field in Spherical Coordinates

Calculate the curl of the vector field \mathbf{F} = (r^2 \sin \theta, r^2 \cos \theta, z)F=(r2sinθ,r2cosθ,z)\mathbf{F} = (r^2 \sin \theta, r^2 \cos \theta, z) in spherical coordinates.

Solution:
In spherical coordinates, the rotor is given by:
\nabla \times \mathbf{F} = \left( \frac{1}{r \sin \theta} \left( \frac{\partial (F_\phi \sin \theta)}{\partial \theta} - \frac{\partial F_\theta}{\partial \phi} \right), \frac{1}{r} \left( \frac{\partial F_r}{\partial \phi} - \frac{\partial (F_\phi r)}{\partial r} \right), \frac{1}{r} \left( \frac{\partial (F_\theta r)}{\partial r} - \frac{\partial F_r}{\partial \theta} \right) \right)×F=(1rsinθ((Fϕsinθ)θFθϕ),1r(Frϕ(Fϕr)r),1r((Fθr)rFrθ))\nabla \times \mathbf{F} = \left( \frac{1}{r \sin \theta} \left( \frac{\partial (F_\phi \sin \theta)}{\partial \theta} - \frac{\partial F_\theta}{\partial \phi} \right), \frac{1}{r} \left( \frac{\partial F_r}{\partial \phi} - \frac{\partial (F_\phi r)}{\partial r} \right), \frac{1}{r} \left( \frac{\partial (F_\theta r)}{\partial r} - \frac{\partial F_r}{\partial \theta} \right) \right)
Where F_r = r^2 \sin \thetaFr=r2sinθF_r = r^2 \sin \theta, F_\theta = r^2 \cos \thetaFθ=r2cosθF_\theta = r^2 \cos \theta, and F_\phi = zFϕ=zF_\phi = z.

Let's calculate each component:

  1. First component:
    \frac{1}{r \sin \theta} \left( \frac{\partial (z \sin \theta)}{\partial \theta} - \frac{\partial (r^2 \cos \theta)}{\partial \phi} \right) = \frac{1}{r \sin \theta} \left( z \cos \theta - 0 \right) = \frac{z cos \theta}{r \sin \theta}1rsinθ((zsinθ)θ(r2cosθ)ϕ)=1rsinθ(zcosθ0)=zcosθrsinθ\frac{1}{r \sin \theta} \left( \frac{\partial (z \sin \theta)}{\partial \theta} - \frac{\partial (r^2 \cos \theta)}{\partial \phi} \right) = \frac{1}{r \sin \theta} \left( z \cos \theta - 0 \right) = \frac{z cos \theta}{r \sin \theta}
  2. Second component:
    \frac{1}{r} \left( \frac{\partial (r^2 \sin \theta)}{\partial \phi} - \frac{\partial (z r)}{\partial r} \right) = \frac{1}{r} \left( 0 - z \right) = -\frac{z}{r}1r((r2sinθ)ϕ(zr)r)=1r(0z)=zr\frac{1}{r} \left( \frac{\partial (r^2 \sin \theta)}{\partial \phi} - \frac{\partial (z r)}{\partial r} \right) = \frac{1}{r} \left( 0 - z \right) = -\frac{z}{r}
  3. Third component:
    \frac{1}{r} \left( \frac{\partial (r^2 \cos \theta) r}{\partial r} - \frac{\partial (r^2 \sin \theta)}{\partial \theta} \right) = \frac{1}{r} \left( 2r \cos \theta - r^2 \cos \theta \right) = \frac{2 \cos \theta - r \cos \theta}{r} = \frac{\cos \theta (2 - r)}{r}1r((r2cosθ)rr(r2sinθ)θ)=1r(2rcosθr2cosθ)=2cosθrcosθr=cosθ(2r)r\frac{1}{r} \left( \frac{\partial (r^2 \cos \theta) r}{\partial r} - \frac{\partial (r^2 \sin \theta)}{\partial \theta} \right) = \frac{1}{r} \left( 2r \cos \theta - r^2 \cos \theta \right) = \frac{2 \cos \theta - r \cos \theta}{r} = \frac{\cos \theta (2 - r)}{r}
    Thus, the rotor of the vector field in spherical coordinates is: \nabla \times \mathbf{F} = \left( \frac{z \cos \theta}{r \sin \theta}, -\frac{z}{r}, \frac{\cos \theta (2 - r)}{r} \right)×F=(zcosθrsinθ,zr,cosθ(2r)r)\nabla \times \mathbf{F} = \left( \frac{z \cos \theta}{r \sin \theta}, -\frac{z}{r}, \frac{\cos \theta (2 - r)}{r} \right)

Commenti