Esercizi sui Campi Vettoriali

Esercizi sui Campi Vettoriali Esercizi sui Campi Vettoriali
Esercizi sui Campi Vettoriali

Versione italiana

Esercizi sui Campi Vettoriali

Concetti Chiave

Un campo vettoriale è una funzione che associa a ogni punto dello spazio un vettore. I campi vettoriali sono utilizzati per descrivere fenomeni fisici come il campo elettrico, il campo magnetico e il campo di velocità di un fluido.

Definizione

Un campo vettoriale \mathbf{F}F\mathbf{F} in uno spazio tridimensionale può essere rappresentato come:

\mathbf{F}(x, y, z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z)) F(x,y,z)=(Fx(x,y,z),Fy(x,y,z),Fz(x,y,z)) \mathbf{F}(x, y, z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z))

dove F_x, F_y, F_zFx,Fy,FzF_x, F_y, F_z sono le componenti del campo vettoriale.

Tipi di Campi Vettoriali

  1. Campi Vettoriali Conservativi: Un campo è conservativo se il lavoro fatto lungo un percorso chiuso è zero. Un campo conservativo può essere espresso come il gradiente di una funzione scalare \phiϕ\phi:
    \mathbf{F} = -\nabla \phi F=ϕ \mathbf{F} = -\nabla \phi

  2. Campi Vettoriali Irrotazionali: Un campo è irrotazionale se il suo rotore è zero:
    \nabla \times \mathbf{F} = 0 ×F=0 \nabla \times \mathbf{F} = 0

  3. Campi Vettoriali Divergenti: La divergenza di un campo vettoriale misura la tendenza del campo a "divergere" da un punto. È definita come:
    \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} F=Fxx+Fyy+Fzz \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}

Esercizi

Esercizio 1: Calcolo della Divergenza

Calcola la divergenza del campo vettoriale \mathbf{F} = (2x, 3y^2, z^3)F=(2x,3y2,z3)\mathbf{F} = (2x, 3y^2, z^3).

Soluzione:

Utilizziamo la formula per la divergenza:

\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} F=Fxx+Fyy+Fzz \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}

Calcoliamo ciascun termine:

  1. \frac{\partial F_x}{\partial x} = \frac{\partial (2x)}{\partial x} = 2Fxx=(2x)x=2\frac{\partial F_x}{\partial x} = \frac{\partial (2x)}{\partial x} = 2
  2. \frac{\partial F_y}{\partial y} = \frac{\partial (3y^2)}{\partial y} = 6yFyy=(3y2)y=6y\frac{\partial F_y}{\partial y} = \frac{\partial (3y^2)}{\partial y} = 6y
  3. \frac{\partial F_z}{\partial z} = \frac{\partial (z^3)}{\partial z} = 3z^2Fzz=(z3)z=3z2\frac{\partial F_z}{\partial z} = \frac{\partial (z^3)}{\partial z} = 3z^2

Quindi, la divergenza è:

\nabla \cdot \mathbf{F} = 2 + 6y + 3z^2 F=2+6y+3z2 \nabla \cdot \mathbf{F} = 2 + 6y + 3z^2

Esercizio 2: Verifica se un Campo è Conservativo

Verifica se il campo vettoriale \mathbf{F} = (y^2, 2xy, 0)F=(y2,2xy,0)\mathbf{F} = (y^2, 2xy, 0) è conservativo.

Soluzione:

Per verificare se un campo è conservativo, calcoliamo il rotore:

\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) ×F=(FzyFyz,FxzFzx,FyxFxy) \nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)

Calcoliamo ciascun componente:

  1. Primo componente:
    \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = 0 - 0 = 0 FzyFyz=00=0 \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = 0 - 0 = 0

  2. Secondo componente:
    \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0 - 0 = 0 FxzFzx=00=0 \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0 - 0 = 0

  3. Terzo componente:
    \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 2y - 2y = 0 FyxFxy=2y2y=0 \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 2y - 2y = 0

Poiché il rotore è zero:

\nabla \times \mathbf{F} = (0, 0, 0) ×F=(0,0,0) \nabla \times \mathbf{F} = (0, 0, 0)

Il campo vettoriale \mathbf{F} = (y^2, 2xy, 0)F=(y2,2xy,0)\mathbf{F} = (y^2, 2xy, 0) è quindi conservativo.

Esercizio 3: Calcolo del Rotore

Calcola il rotore del campo vettoriale \mathbf{F} = (z, x, y)F=(z,x,y)\mathbf{F} = (z, x, y).

Soluzione:

Utilizziamo la formula per il rotore:

\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) ×F=(FzyFyz,FxzFzx,FyxFxy) \nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)

Calcoliamo ciascun componente:

  1. Primo componente:
    \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial x}{\partial z} = 0 - 0 = 0 FzyFyz=zyxz=00=0 \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial x}{\partial z} = 0 - 0 = 0

  2. Secondo componente:
    \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial z}{\partial z} - \frac{\partial y}{\partial x} = 1 - 0 = 1 FxzFzx=zzyx=10=1 \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial z}{\partial z} - \frac{\partial y}{\partial x} = 1 - 0 = 1

  3. Terzo componente:
    \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial x}{\partial x} - \frac{\partial z}{\partial y} = 1 - 0 = 1 FyxFxy=xxzy=10=1 \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial x}{\partial x} - \frac{\partial z}{\partial y} = 1 - 0 = 1

Quindi, il rotore del campo vettoriale è:

\nabla \times \mathbf{F} = (0, 1, 1) ×F=(0,1,1) \nabla \times \mathbf{F} = (0, 1, 1)

English version

Vector Field Exercises

Key Concepts

A vector field is a function that associates a vector to each point in space. Vector fields are used to describe physical phenomena such as the electric field, the magnetic field, and the velocity field of a fluid.

Definition

A vector field \mathbf{F}F\mathbf{F} in a three-dimensional space can be represented as:

\mathbf{F}(x, y, z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z)) F(x,y,z)=(Fx(x,y,z),Fy(x,y,z),Fz(x,y,z)) \mathbf{F}(x, y, z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z))

where F_x, F_y, F_zFx,Fy,FzF_x, F_y, F_z are the components of the vector field.

Types of Vector Fields

  1. Conservative Vector Fields: A field is conservative if the work done along a closed path is zero. A conservative field can be expressed as the gradient of a scalar function \phiϕ\phi:
    \mathbf{F} = -\nabla \phi F=ϕ \mathbf{F} = -\nabla \phi

  2. Irrotational Vector Fields: A field is irrotational if its curl is zero:
    \nabla \times \mathbf{F} = 0 ×F=0 \nabla \times \mathbf{F} = 0

  3. Divergent Vector Fields:
    The divergence of a vector field measures the tendency of the field to "diverge" from a point. It is defined as: \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}F=Fxx+Fyy+Fzz\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}

Exercises

Exercise 1:

Calculation of Divergence Calculate the divergence of the vector field \mathbf{F} = (2x, 3y^2, z^3)F=(2x,3y2,z3)\mathbf{F} = (2x, 3y^2, z^3).

Solution:
We use the divergence formula: \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}F=Fxx+Fyy+Fzz\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}
We calculate each term:

  1. \frac{\partial F_x}{\partial x} = \frac{\partial (2x) }{\partial x} = 2Fxx=(2x)x=2\frac{\partial F_x}{\partial x} = \frac{\partial (2x) }{\partial x} = 2
  2. \frac{\partial F_y}{\partial y} = \frac{\partial (3y^2)}{\partial y} = 6yFyy=(3y2)y=6y\frac{\partial F_y}{\partial y} = \frac{\partial (3y^2)}{\partial y} = 6y
  3. \frac{\partial F_z}{\partial z} = \frac{\partial (z^3)}{\partial z} = 3z^2Fzz=(z3)z=3z2\frac{\partial F_z}{\partial z} = \frac{\partial (z^3)}{\partial z} = 3z^2

So, the divergence is:

\nabla \cdot \mathbf{F} = 2 + 6y + 3z^2 F=2+6y+3z2 \nabla \cdot \mathbf{F} = 2 + 6y + 3z^2

Exercise 2: Check if a Field is Conservative

Check if the vector field \mathbf{F} = (y^2, 2xy, 0)F=(y2,2xy,0)\mathbf{F} = (y^2, 2xy, 0) is conservative.

Solution:
To check whether a field is conservative, we calculate the rotor:
\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x } - \frac{\partial F_x}{\partial y} \right)×F=(FzyFyz,FxzFzx,FyxFxy)\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x } - \frac{\partial F_x}{\partial y} \right)
Let's calculate each component:

  1. First component: \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = 0 - 0 = 0FzyFyz=00=0\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = 0 - 0 = 0
  2. Second component:
    \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0 - 0 = 0FxzFzx=00=0\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0 - 0 = 0
  3. Third component:
    \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 2y - 2y = 0FyxFxy=2y2y=0\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 2y - 2y = 0

Since the rotor is zero: \nabla \times \mathbf{F} = (0, 0, 0)×F=(0,0,0)\nabla \times \mathbf{F} = (0, 0, 0) The vector field \mathbf{F} = (y^2, 2xy, 0)F=(y2,2xy,0)\mathbf{F} = (y^2, 2xy, 0) is therefore conservative.

Exercise 3: Calculating the Rotor Calculate the rotor of the vector field \mathbf{F} = (z, x, y)F=(z,x,y)\mathbf{F} = (z, x, y).

Solution:
We use the formula for the rotor:
\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) ×F=(FzyFyz,FxzFzx,FyxFxy) \nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)
Let's calculate each component:

  1. First component:
    \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial x}{\partial z} = 0 - 0 = 0FzyFyz=zyxz=00=0\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial x}{\partial z} = 0 - 0 = 0
  2. Second component:
    \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial z}{\partial z} - \frac{\partial y}{\partial x} = 1 - 0 = 1FxzFzx=zzyx=10=1\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial z}{\partial z} - \frac{\partial y}{\partial x} = 1 - 0 = 1
  3. Third component:
    \frac{\partial F_y}{ \partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial x}{\partial x} - \frac{\partial z}{\partial y} = 1 - 0 = 1FyxFxy=xxzy=10=1\frac{\partial F_y}{ \partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial x}{\partial x} - \frac{\partial z}{\partial y} = 1 - 0 = 1
    So, the rotor of the vector field is: \nabla \times \mathbf{F} = (0, 1, 1)×F=(0,1,1)\nabla \times \mathbf{F} = (0, 1, 1)

Commenti