Versione italiana
Calcolo di Autovalori e Autovettori
Definizioni
Passaggi per il Calcolo
Determinare l'equazione caratteristica :
L'equazione caratteristica di una matrice A è data da:
\text{det}(A - \lambda I) = 0 det ( A − λ I ) = 0 \text{det}(A - \lambda I) = 0 det ( A − λ I ) = 0
dove I è la matrice identità della stessa dimensione di A.
Calcolare gli autovalori :
Risolvere l'equazione caratteristica per λ. Gli zeri dell'equazione forniscono gli autovalori.
Calcolare gli autovettori :
Per ogni autovalore λ, risolvere il sistema di equazioni:
(A - \lambda I)v = 0 ( A − λ I ) v = 0 (A - \lambda I)v = 0 ( A − λ I ) v = 0
Questo sistema può essere risolto utilizzando metodi come l'eliminazione di Gauss.
Esempio
Consideriamo la matrice:
A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} A = ( 4 1 2 3 ) A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} A = ( 4 2 ​ 1 3 ​ )
Passo 1: Equazione caratteristica
Calcoliamo \text{det}(A - \lambda I) det ( A − λ I ) \text{det}(A - \lambda I) det ( A − λ I ) :
A - \lambda I = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} A − λ I = ( 4 − λ 1 2 3 − λ ) A - \lambda I = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} A − λ I = ( 4 − λ 2 ​ 1 3 − λ ​ )
Calcoliamo il determinante:
\text{det}(A - \lambda I) = (4 - \lambda)(3 - \lambda) - (2)(1) = \lambda^2 - 7\lambda + 10 det ( A − λ I ) = ( 4 − λ ) ( 3 − λ ) − ( 2 ) ( 1 ) = λ 2 − 7 λ + 10 \text{det}(A - \lambda I) = (4 - \lambda)(3 - \lambda) - (2)(1) = \lambda^2 - 7\lambda + 10 det ( A − λ I ) = ( 4 − λ ) ( 3 − λ ) − ( 2 ) ( 1 ) = λ 2 − 7 λ + 10
Passo 2: Autovalori
Risolvendo l'equazione:
\lambda^2 - 7\lambda + 10 = 0 λ 2 − 7 λ + 10 = 0 \lambda^2 - 7\lambda + 10 = 0 λ 2 − 7 λ + 10 = 0
Utilizzando la formula quadratica:
\lambda = \frac{7 \pm \sqrt{(7)^2 - 4 \cdot 1 \cdot 10}}{2 \cdot 1} = \frac{7 \pm \sqrt{49 - 40}}{2} = \frac{7 \pm 3}{2} λ = 7 ± ( 7 ) 2 − 4 ⋅ 1 ⋅ 10 2 ⋅ 1 = 7 ± 49 − 40 2 = 7 ± 3 2 \lambda = \frac{7 \pm \sqrt{(7)^2 - 4 \cdot 1 \cdot 10}}{2 \cdot 1} = \frac{7 \pm \sqrt{49 - 40}}{2} = \frac{7 \pm 3}{2} λ = 2 ⋅ 1 7 ± ( 7 ) 2 − 4 ⋅ 1 ⋅ 10 ​ ​ = 2 7 ± 49 − 40 ​ ​ = 2 7 ± 3 ​
Gli autovalori sono:
\lambda_1 = 5, \quad \lambda_2 = 2 λ 1 = 5 , λ 2 = 2 \lambda_1 = 5, \quad \lambda_2 = 2 λ 1 ​ = 5 , λ 2 ​ = 2
Passo 3: Autovettori
Per \lambda_1 = 5 λ 1 = 5 \lambda_1 = 5 λ 1 ​ = 5 :
(A - 5I)v = 0 \implies \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 ( A − 5 I ) v = 0    ⟹    ( − 1 1 2 − 2 ) ( x 1 x 2 ) = 0 (A - 5I)v = 0 \implies \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 ( A − 5 I ) v = 0 ⟹ ( − 1 2 ​ 1 − 2 ​ ) ( x 1 ​ x 2 ​ ​ ) = 0
Da cui otteniamo x_1 = x_2 x 1 = x 2 x_1 = x_2 x 1 ​ = x 2 ​ . Un autovettore è:
v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v 1 = ( 1 1 ) v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v 1 ​ = ( 1 1 ​ )
Per \lambda_2 = 2 λ 2 = 2 \lambda_2 = 2 λ 2 ​ = 2 :
(A - 2I)v = 0 \implies \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 ( A − 2 I ) v = 0    ⟹    ( 2 1 2 1 ) ( x 1 x 2 ) = 0 (A - 2I)v = 0 \implies \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 ( A − 2 I ) v = 0 ⟹ ( 2 2 ​ 1 1 ​ ) ( x 1 ​ x 2 ​ ​ ) = 0
Da cui otteniamo 2x_1 + x_2 = 0 2 x 1 + x 2 = 0 2x_1 + x_2 = 0 2 x 1 ​ + x 2 ​ = 0 o x_2 = -2x_1 x 2 = − 2 x 1 x_2 = -2x_1 x 2 ​ = − 2 x 1 ​ . Un autovettore è:
v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v 2 = ( 1 − 2 ) v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v 2 ​ = ( 1 − 2 ​ )
Risultati Finali
Autovalori: \lambda_1 = 5, \lambda_2 = 2 λ 1 = 5 , λ 2 = 2 \lambda_1 = 5, \lambda_2 = 2 λ 1 ​ = 5 , λ 2 ​ = 2
Autovettori:
Per \lambda_1 = 5 λ 1 = 5 \lambda_1 = 5 λ 1 ​ = 5 : v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v 1 = ( 1 1 ) v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v 1 ​ = ( 1 1 ​ )
Per \lambda_2 = 2 λ 2 = 2 \lambda_2 = 2 λ 2 ​ = 2 : v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v 2 = ( 1 − 2 ) v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v 2 ​ = ( 1 − 2 ​ )
English version
Calculating Eigenvalues ​​and Eigenvectors
Definitions
Eigenvalue : A number λ is an eigenvalue of a matrix A if there exists a nonzero vector v such that:
A v = \lambda v A v = λ v A v = \lambda v A v = λ v
Eigenvector : A vector v is an eigenvector associated with the eigenvalue λ if it satisfies the equation above.
Steps for Calculation
Determine the characteristic equation :
The characteristic equation of a matrix A is given by:
\text{det}(A - \lambda I) = 0 det ( A − λ I ) = 0 \text{det}(A - \lambda I) = 0 det ( A − λ I ) = 0
where $ I $ is the identity matrix of the same dimension as A.
Calculate the eigenvalues :
Solve the characteristic equation for λ. The zeros of the equation provide the eigenvalues.
Calculate the eigenvectors :
For each eigenvalue λ, solve the system of equations:
(A - \lambda I)v = 0 ( A − λ I ) v = 0 (A - \lambda I)v = 0 ( A − λ I ) v = 0
This system can be solved using methods such as Gaussian elimination.
Example
Consider the matrix:
A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} A = ( 4 1 2 3 ) A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} A = ( 4 2 ​ 1 3 ​ )
Step 1: Characteristic equation
Let's calculate \text{det}(A - \lambda I) det ( A − λ I ) \text{det}(A - \lambda I) det ( A − λ I ) :
A - \lambda I = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} A − λ I = ( 4 − λ 1 2 3 − λ ) A - \lambda I = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} A − λ I = ( 4 − λ 2 ​ 1 3 − λ ​ )
Let's calculate the determinant:
\text{det}(A - \lambda I) = (4 - \lambda)(3 - \lambda) - (2)(1) = \lambda^2 - 7\lambda + 10 det ( A − λ I ) = ( 4 − λ ) ( 3 − λ ) − ( 2 ) ( 1 ) = λ 2 − 7 λ + 10 \text{det}(A - \lambda I) = (4 - \lambda)(3 - \lambda) - (2)(1) = \lambda^2 - 7\lambda + 10 det ( A − λ I ) = ( 4 − λ ) ( 3 − λ ) − ( 2 ) ( 1 ) = λ 2 − 7 λ + 10
Step 2: Eigenvalues
Solving the equation:
\lambda^2 - 7\lambda + 10 = 0 λ 2 − 7 λ + 10 = 0 \lambda^2 - 7\lambda + 10 = 0 λ 2 − 7 λ + 10 = 0
Using the quadratic formula:
\lambda = \frac{7 \pm \sqrt{(7)^2 - 4 \cdot 1 \cdot 10}}{2 \cdot 1} = \frac{7 \pm \sqrt{49 - 40}}{2} = \frac{7 \pm 3}{2} λ = 7 ± ( 7 ) 2 − 4 ⋅ 1 ⋅ 10 2 ⋅ 1 = 7 ± 49 − 40 2 = 7 ± 3 2 \lambda = \frac{7 \pm \sqrt{(7)^2 - 4 \cdot 1 \cdot 10}}{2 \cdot 1} = \frac{7 \pm \sqrt{49 - 40}}{2} = \frac{7 \pm 3}{2} λ = 2 ⋅ 1 7 ± ( 7 ) 2 − 4 ⋅ 1 ⋅ 10 ​ ​ = 2 7 ± 49 − 40 ​ ​ = 2 7 ± 3 ​
The eigenvalues ​​are:
\lambda_1 = 5, \quad \lambda_2 = 2 λ 1 = 5 , λ 2 = 2 \lambda_1 = 5, \quad \lambda_2 = 2 λ 1 ​ = 5 , λ 2 ​ = 2
Step 3: Eigenvectors
For \lambda_1 = 5 λ 1 = 5 \lambda_1 = 5 λ 1 ​ = 5 :
(A - 5I)v = 0 \implies \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 ( A − 5 I ) v = 0    ⟹    ( − 1 1 2 − 2 ) ( x 1 x 2 ) = 0 (A - 5I)v = 0 \implies \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 ( A − 5 I ) v = 0 ⟹ ( − 1 2 ​ 1 − 2 ​ ) ( x 1 ​ x 2 ​ ​ ) = 0
From which we get x_1 = x_2 x 1 = x 2 x_1 = x_2 x 1 ​ = x 2 ​ . An eigenvector is:
v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v 1 = ( 1 1 ) v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v 1 ​ = ( 1 1 ​ )
For \lambda_2 = 2 λ 2 = 2 \lambda_2 = 2 λ 2 ​ = 2 :
(A - 2I)v = 0 \implies \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 ( A − 2 I ) v = 0    ⟹    ( 2 1 2 1 ) ( x 1 x 2 ) = 0 (A - 2I)v = 0 \implies \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 ( A − 2 I ) v = 0 ⟹ ( 2 2 ​ 1 1 ​ ) ( x 1 ​ x 2 ​ ​ ) = 0
From which we get 2x_1 + x_2 = 0 2 x 1 + x 2 = 0 2x_1 + x_2 = 0 2 x 1 ​ + x 2 ​ = 0 or x_2 = -2x_1 x 2 = − 2 x 1 x_2 = -2x_1 x 2 ​ = − 2 x 1 ​ . An eigenvector is:
v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v 2 = ( 1 − 2 ) v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v 2 ​ = ( 1 − 2 ​ )
Final Results
Eigenvalues: \lambda_1 = 5, \lambda_2 = 2 λ 1 = 5 , λ 2 = 2 \lambda_1 = 5, \lambda_2 = 2 λ 1 ​ = 5 , λ 2 ​ = 2
Eigenvectors:
For \lambda_1 = 5 λ 1 = 5 \lambda_1 = 5 λ 1 ​ = 5 : v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v 1 = ( 1 1 ) v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v 1 ​ = ( 1 1 ​ )
For \lambda_2 = 2 λ 2 = 2 \lambda_2 = 2 λ 2 ​ = 2 : v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v 2 = ( 1 − 2 ) v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v 2 ​ = ( 1 − 2 ​ )
Commenti
Posta un commento