Versione italiana
Esercizi sulla deviazione standard
Teoria della Deviazione Standard
La deviazione standard è una misura della dispersione o variabilità di un insieme di dati. Indica quanto i valori di un insieme si discostano dalla media. Una deviazione standard bassa indica che i dati sono vicini alla media, mentre una deviazione standard alta indica che i dati sono più sparsi.
Per un insieme di dati campionari, la deviazione standard è calcolata come segue:
Calcola la media (μ) :
\mu = \frac{1}{n} \sum_{i=1}^{n} x_i μ = 1 n ∑ i = 1 n x i \mu = \frac{1}{n} \sum_{i=1}^{n} x_i μ = n 1 ​ i = 1 ∑ n ​ x i ​
dove n n n n è il numero totale di osservazioni e x_i x i x_i x i ​ sono i valori.
Calcola la varianza (σ²) :
\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2 σ 2 = 1 n − 1 ∑ i = 1 n ( x i − μ ) 2 \sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2 σ 2 = n − 1 1 ​ i = 1 ∑ n ​ ( x i ​ − μ ) 2
Calcola la deviazione standard (σ) :
\sigma = \sqrt{\sigma^2} σ = σ 2 \sigma = \sqrt{\sigma^2} σ = σ 2 ​
Esercizi sulla Deviazione Standard
Esercizio 1: Calcolo della Deviazione Standard
Considera il seguente insieme di dati:
\{4, 8, 6, 5, 3\} { 4 , 8 , 6 , 5 , 3 } \{4, 8, 6, 5, 3\} { 4 , 8 , 6 , 5 , 3 }
Svolgimento:
Calcola la media :
\mu = \frac{4 + 8 + 6 + 5 + 3}{5} = \frac{26}{5} = 5.2 μ = 4 + 8 + 6 + 5 + 3 5 = 26 5 = 5.2 \mu = \frac{4 + 8 + 6 + 5 + 3}{5} = \frac{26}{5} = 5.2 μ = 5 4 + 8 + 6 + 5 + 3 ​ = 5 26 ​ = 5.2
Calcola la varianza :
\begin{align*}
\sigma^2 & = \frac{1}{5-1} [(4 - 5.2)^2 + (8 - 5.2)^2 + (6 - 5.2)^2 + (5 - 5.2)^2 + (3 - 5.2)^2] \\
& = \frac{1}{4} [(-1.2)^2 + (2.8)^2 + (0.8)^2 + (-0.2)^2 + (-2.2)^2] \\
& = \frac{1}{4} [1.44 + 7.84 + 0.64 + 0.04 + 4.84] \\
& = \frac{1}{4} [14.8] = 3.7
\end{align*} σ 2 = 1 5 − 1 [ ( 4 − 5.2 ) 2 + ( 8 − 5.2 ) 2 + ( 6 − 5.2 ) 2 + ( 5 − 5.2 ) 2 + ( 3 − 5.2 ) 2 ] = 1 4 [ ( − 1.2 ) 2 + ( 2.8 ) 2 + ( 0.8 ) 2 + ( − 0.2 ) 2 + ( − 2.2 ) 2 ] = 1 4 [ 1.44 + 7.84 + 0.64 + 0.04 + 4.84 ] = 1 4 [ 14.8 ] = 3.7 \begin{align*}
\sigma^2 & = \frac{1}{5-1} [(4 - 5.2)^2 + (8 - 5.2)^2 + (6 - 5.2)^2 + (5 - 5.2)^2 + (3 - 5.2)^2] \\
& = \frac{1}{4} [(-1.2)^2 + (2.8)^2 + (0.8)^2 + (-0.2)^2 + (-2.2)^2] \\
& = \frac{1}{4} [1.44 + 7.84 + 0.64 + 0.04 + 4.84] \\
& = \frac{1}{4} [14.8] = 3.7
\end{align*} σ 2 ​ = 5 − 1 1 ​ [( 4 − 5.2 ) 2 + ( 8 − 5.2 ) 2 + ( 6 − 5.2 ) 2 + ( 5 − 5.2 ) 2 + ( 3 − 5.2 ) 2 ] = 4 1 ​ [( − 1.2 ) 2 + ( 2.8 ) 2 + ( 0.8 ) 2 + ( − 0.2 ) 2 + ( − 2.2 ) 2 ] = 4 1 ​ [ 1.44 + 7.84 + 0.64 + 0.04 + 4.84 ] = 4 1 ​ [ 14.8 ] = 3.7 ​
Calcola la deviazione standard :
\sigma = \sqrt{3.7} \approx 1.923 σ = 3.7 ≈ 1.923 \sigma = \sqrt{3.7} \approx 1.923 σ = 3.7 ​ ≈ 1.923
Risultato:
La deviazione standard dell’insieme di dati è circa σ ≈ 1.923 σ ≈ 1.923 σ ≈ 1.923 σ ≈ 1.923 .
Esercizio 2: Calcolo della Deviazione Standard con Valori Negativi
Considera il seguente insieme di dati:
\{-3, -1, -4, -2, -5\} { − 3 , − 1 , − 4 , − 2 , − 5 } \{-3, -1, -4, -2, -5\} { − 3 , − 1 , − 4 , − 2 , − 5 }
Svolgimento:
Calcola la media :
\mu = \frac{-3 + (-1) + (-4) + (-2) + (-5)}{5} = \frac{-15}{5} = -3 μ = − 3 + ( − 1 ) + ( − 4 ) + ( − 2 ) + ( − 5 ) 5 = − 15 5 = − 3 \mu = \frac{-3 + (-1) + (-4) + (-2) + (-5)}{5} = \frac{-15}{5} = -3 μ = 5 − 3 + ( − 1 ) + ( − 4 ) + ( − 2 ) + ( − 5 ) ​ = 5 − 15 ​ = − 3
Calcola la varianza :
\begin{align*}
\sigma^2 & = \frac{1}{5-1} [(-3 - (-3))^2 + (-1 - (-3))^2 + (-4 - (-3))^2 + (-2 - (-3))^2 + (-5 - (-3))^2] \\
& = \frac{1}{4} [(0)^2 + (2)^2 + (-1)^2 + (1)^2 + (-2)^2] \\
& = \frac{1}{4} [0 + 4 + 1 + 1 + 4] = \frac{10}{4} = 2.5
\end{align*} σ 2 = 1 5 − 1 [ ( − 3 − ( − 3 ) ) 2 + ( − 1 − ( − 3 ) ) 2 + ( − 4 − ( − 3 ) ) 2 + ( − 2 − ( − 3 ) ) 2 + ( − 5 − ( − 3 ) ) 2 ] = 1 4 [ ( 0 ) 2 + ( 2 ) 2 + ( − 1 ) 2 + ( 1 ) 2 + ( − 2 ) 2 ] = 1 4 [ 0 + 4 + 1 + 1 + 4 ] = 10 4 = 2.5 \begin{align*}
\sigma^2 & = \frac{1}{5-1} [(-3 - (-3))^2 + (-1 - (-3))^2 + (-4 - (-3))^2 + (-2 - (-3))^2 + (-5 - (-3))^2] \\
& = \frac{1}{4} [(0)^2 + (2)^2 + (-1)^2 + (1)^2 + (-2)^2] \\
& = \frac{1}{4} [0 + 4 + 1 + 1 + 4] = \frac{10}{4} = 2.5
\end{align*} σ 2 ​ = 5 − 1 1 ​ [( − 3 − ( − 3 ) ) 2 + ( − 1 − ( − 3 ) ) 2 + ( − 4 − ( − 3 ) ) 2 + ( − 2 − ( − 3 ) ) 2 + ( − 5 − ( − 3 ) ) 2 ] = 4 1 ​ [( 0 ) 2 + ( 2 ) 2 + ( − 1 ) 2 + ( 1 ) 2 + ( − 2 ) 2 ] = 4 1 ​ [ 0 + 4 + 1 + 1 + 4 ] = 4 10 ​ = 2.5 ​
Calcola la deviazione standard :
σ = \sqrt{2.5} ≈ 1.581 σ = 2.5 ≈ 1.581 σ = \sqrt{2.5} ≈ 1.581 σ = 2.5 ​ ≈ 1.581
Risultato:
La deviazione standard dell’insieme di dati è circa σ ≈ 1.581 σ ≈ 1.581 σ ≈ 1.581 σ ≈ 1.581 .
Esercizio 3: Calcolo della Deviazione Standard con Valori Decimali
Considera il seguente insieme di dati:
\{10.5, 11.0, 9.8, 10.0, 10.7\} { 10.5 , 11.0 , 9.8 , 10.0 , 10.7 } \{10.5, 11.0, 9.8, 10.0, 10.7\} { 10.5 , 11.0 , 9.8 , 10.0 , 10.7 }
Svolgimento:
Calcola la media :
μ = \frac{10.5 + 11.0 + 9.8 + 10.0 + 10.7}{5} = \frac{52}{5} = 10.4 μ = 10.5 + 11.0 + 9.8 + 10.0 + 10.7 5 = 52 5 = 10.4 μ = \frac{10.5 + 11.0 + 9.8 + 10.0 + 10.7}{5} = \frac{52}{5} = 10.4 μ = 5 10.5 + 11.0 + 9.8 + 10.0 + 10.7 ​ = 5 52 ​ = 10.4
Calcola la varianza :
\begin{align*}
σ^2 & = \frac{1}{5-1} [(10.5 - 10.4)^2 + (11.0 - 10.4)^2 + (9.8 - 10.4)^2 + (10.0 - 10.4)^2 + (10.7 - 10.4)^2] \\
& = \frac{1}{4} [(0.1)^2 + (0.6)^2 + (-0.6)^2 + (-0.4)^2 + (0.3)^2] \\
& = \frac{1}{4} [0.01 + 0.36 + 0.36 + 0.16 + 0.09] \\
& = \frac{0.98}{4} ≈ 0.245
\end{align*} σ 2 = 1 5 − 1 [ ( 10.5 − 10.4 ) 2 + ( 11.0 − 10.4 ) 2 + ( 9.8 − 10.4 ) 2 + ( 10.0 − 10.4 ) 2 + ( 10.7 − 10.4 ) 2 ] = 1 4 [ ( 0.1 ) 2 + ( 0.6 ) 2 + ( − 0.6 ) 2 + ( − 0.4 ) 2 + ( 0.3 ) 2 ] = 1 4 [ 0.01 + 0.36 + 0.36 + 0.16 + 0.09 ] = 0.98 4 ≈ 0.245 \begin{align*}
σ^2 & = \frac{1}{5-1} [(10.5 - 10.4)^2 + (11.0 - 10.4)^2 + (9.8 - 10.4)^2 + (10.0 - 10.4)^2 + (10.7 - 10.4)^2] \\
& = \frac{1}{4} [(0.1)^2 + (0.6)^2 + (-0.6)^2 + (-0.4)^2 + (0.3)^2] \\
& = \frac{1}{4} [0.01 + 0.36 + 0.36 + 0.16 + 0.09] \\
& = \frac{0.98}{4} ≈ 0.245
\end{align*} σ 2 ​ = 5 − 1 1 ​ [( 10.5 − 10.4 ) 2 + ( 11.0 − 10.4 ) 2 + ( 9.8 − 10.4 ) 2 + ( 10.0 − 10.4 ) 2 + ( 10.7 − 10.4 ) 2 ] = 4 1 ​ [( 0.1 ) 2 + ( 0.6 ) 2 + ( − 0.6 ) 2 + ( − 0.4 ) 2 + ( 0.3 ) 2 ] = 4 1 ​ [ 0.01 + 0.36 + 0.36 + 0.16 + 0.09 ] = 4 0.98 ​ ≈ 0.245 ​
Calcola la deviazione standard :
σ ≈ √0.245 ≈ 0,495. σ ≈ √ 0.245 ≈ 0 , 495. σ ≈ √0.245 ≈ 0,495. σ ≈ √0.245 ≈ 0 , 495.
Risultato:
La deviazione standard dell’insieme di dati è circa σ ≈ 0,495 σ ≈ 0 , 495 σ ≈ 0,495 σ ≈ 0 , 495 .
English version
Standard Deviation Exercises
Standard Deviation Theory
Standard deviation is a measure of the dispersion or variability of a data set. It indicates how much the values ​​in a set differ from the mean. A low standard deviation indicates that the data are close to the mean, while a high standard deviation indicates that the data are more spread out.
For a sample data set, the standard deviation is calculated as follows:
Calculate the mean (μ) :
\mu = \frac{1}{n} \sum_{i=1}^{n} x_i μ = 1 n ∑ i = 1 n x i \mu = \frac{1}{n} \sum_{i=1}^{n} x_i μ = n 1 ​ i = 1 ∑ n ​ x i ​
where n n n n is the total number of observations and x_i x i x_i x i ​ are the values.
Calculate the variance (σ²) :
\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2 σ 2 = 1 n − 1 ∑ i = 1 n ( x i − μ ) 2 \sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2 σ 2 = n − 1 1 ​ i = 1 ∑ n ​ ( x i ​ − μ ) 2
Calculate the standard deviation (σ) :
\sigma = \sqrt{\sigma^2} σ = σ 2 \sigma = \sqrt{\sigma^2} σ = σ 2 ​
Standard Deviation Exercises
Exercise 1: Calculating the Standard Deviation
Consider the following set of data:
\{4, 8, 6, 5, 3\} { 4 , 8 , 6 , 5 , 3 } \{4, 8, 6, 5, 3\} { 4 , 8 , 6 , 5 , 3 }
Procedure:
Calculate the mean :
\mu = \frac{4 + 8 + 6 + 5 + 3}{5} = \frac{26}{5} = 5.2 μ = 4 + 8 + 6 + 5 + 3 5 = 26 5 = 5.2 \mu = \frac{4 + 8 + 6 + 5 + 3}{5} = \frac{26}{5} = 5.2 μ = 5 4 + 8 + 6 + 5 + 3 ​ = 5 26 ​ = 5.2
Calculate the variance :
\begin{align*}
\sigma^2 & = \frac{1}{5-1} [(4 - 5.2)^2 + (8 - 5.2)^2 + (6 - 5.2)^2 + (5 - 5.2)^2 + (3 - 5.2)^2] \\
& = \frac{1}{4} [(-1.2)^2 + (2.8)^2 + (0.8)^2 + (-0.2)^2 + (-2.2)^2] \\
& = \frac{1}{4} [1.44 + 7.84 + 0.64 + 0.04 + 4.84] \\
& = \frac{1}{4} [14.8] = 3.7
\end{align*} σ 2 = 1 5 − 1 [ ( 4 − 5.2 ) 2 + ( 8 − 5.2 ) 2 + ( 6 − 5.2 ) 2 + ( 5 − 5.2 ) 2 + ( 3 − 5.2 ) 2 ] = 1 4 [ ( − 1.2 ) 2 + ( 2.8 ) 2 + ( 0.8 ) 2 + ( − 0.2 ) 2 + ( − 2.2 ) 2 ] = 1 4 [ 1.44 + 7.84 + 0.64 + 0.04 + 4.84 ] = 1 4 [ 14.8 ] = 3.7 \begin{align*}
\sigma^2 & = \frac{1}{5-1} [(4 - 5.2)^2 + (8 - 5.2)^2 + (6 - 5.2)^2 + (5 - 5.2)^2 + (3 - 5.2)^2] \\
& = \frac{1}{4} [(-1.2)^2 + (2.8)^2 + (0.8)^2 + (-0.2)^2 + (-2.2)^2] \\
& = \frac{1}{4} [1.44 + 7.84 + 0.64 + 0.04 + 4.84] \\
& = \frac{1}{4} [14.8] = 3.7
\end{align*} σ 2 ​ = 5 − 1 1 ​ [( 4 − 5.2 ) 2 + ( 8 − 5.2 ) 2 + ( 6 − 5.2 ) 2 + ( 5 − 5.2 ) 2 + ( 3 − 5.2 ) 2 ] = 4 1 ​ [( − 1.2 ) 2 + ( 2.8 ) 2 + ( 0.8 ) 2 + ( − 0.2 ) 2 + ( − 2.2 ) 2 ] = 4 1 ​ [ 1.44 + 7.84 + 0.64 + 0.04 + 4.84 ] = 4 1 ​ [ 14.8 ] = 3.7 ​
Calculate the standard deviation :
\sigma = \sqrt{3.7} \approx 1.923 σ = 3.7 ≈ 1.923 \sigma = \sqrt{3.7} \approx 1.923 σ = 3.7 ​ ≈ 1.923
Result:
The standard deviation of the data set is approximately σ ≈ 1.923 σ ≈ 1.923 σ ≈ 1.923 σ ≈ 1.923 .
Exercise 2: Calculating the Standard Deviation with Negative Values
Consider the following data set:
\{-3, -1, -4, -2, -5\} { − 3 , − 1 , − 4 , − 2 , − 5 } \{-3, -1, -4, -2, -5\} { − 3 , − 1 , − 4 , − 2 , − 5 }
Procedure:
Calculate the mean :
\mu = \frac{-3 + (-1) + (-4) + (-2) + (-5)}{5} = \frac{-15}{5} = -3 μ = − 3 + ( − 1 ) + ( − 4 ) + ( − 2 ) + ( − 5 ) 5 = − 15 5 = − 3 \mu = \frac{-3 + (-1) + (-4) + (-2) + (-5)}{5} = \frac{-15}{5} = -3 μ = 5 − 3 + ( − 1 ) + ( − 4 ) + ( − 2 ) + ( − 5 ) ​ = 5 − 15 ​ = − 3
Calculate the variance :
\begin{align*}
\sigma^2 & = \frac{1}{5-1} [(-3 - (-3))^2 + (-1 - (-3))^2 + (-4 - (-3))^2 + (-2 - (-3))^2 + (-5 - (-3))^2] \\
& = \frac{1}{4} [(0)^2 + (2)^2 + (-1)^2 + (1)^2 + (-2)^2] \\
& = \frac{1}{4} [0 + 4 + 1 + 1 + 4] = \frac{10}{4} = 2.5
\end{align*} σ 2 = 1 5 − 1 [ ( − 3 − ( − 3 ) ) 2 + ( − 1 − ( − 3 ) ) 2 + ( − 4 − ( − 3 ) ) 2 + ( − 2 − ( − 3 ) ) 2 + ( − 5 − ( − 3 ) ) 2 ] = 1 4 [ ( 0 ) 2 + ( 2 ) 2 + ( − 1 ) 2 + ( 1 ) 2 + ( − 2 ) 2 ] = 1 4 [ 0 + 4 + 1 + 1 + 4 ] = 10 4 = 2.5 \begin{align*}
\sigma^2 & = \frac{1}{5-1} [(-3 - (-3))^2 + (-1 - (-3))^2 + (-4 - (-3))^2 + (-2 - (-3))^2 + (-5 - (-3))^2] \\
& = \frac{1}{4} [(0)^2 + (2)^2 + (-1)^2 + (1)^2 + (-2)^2] \\
& = \frac{1}{4} [0 + 4 + 1 + 1 + 4] = \frac{10}{4} = 2.5
\end{align*} σ 2 ​ = 5 − 1 1 ​ [( − 3 − ( − 3 ) ) 2 + ( − 1 − ( − 3 ) ) 2 + ( − 4 − ( − 3 ) ) 2 + ( − 2 − ( − 3 ) ) 2 + ( − 5 − ( − 3 ) ) 2 ] = 4 1 ​ [( 0 ) 2 + ( 2 ) 2 + ( − 1 ) 2 + ( 1 ) 2 + ( − 2 ) 2 ] = 4 1 ​ [ 0 + 4 + 1 + 1 + 4 ] = 4 10 ​ = 2.5 ​
Calculate the standard deviation :
σ = \sqrt{2.5} ≈ 1.581 σ = 2.5 ≈ 1.581 σ = \sqrt{2.5} ≈ 1.581 σ = 2.5 ​ ≈ 1.581
Result:
The standard deviation of the data set is approximately σ ≈ 1.581 σ ≈ 1.581 σ ≈ 1.581 σ ≈ 1.581 .
Exercise 3: Calculating the Standard Deviation with Decimal Values
Consider the following data set:
\{10.5, 11.0, 9.8, 10.0, 10.7\} { 10.5 , 11.0 , 9.8 , 10.0 , 10.7 } \{10.5, 11.0, 9.8, 10.0, 10.7\} { 10.5 , 11.0 , 9.8 , 10.0 , 10.7 }
Procedure:
Calculate the mean :
μ = \frac{10.5 + 11.0 + 9.8 + 10.0 + 10.7}{5} = \frac{52}{5} = 10.4 μ = 10.5 + 11.0 + 9.8 + 10.0 + 10.7 5 = 52 5 = 10.4 μ = \frac{10.5 + 11.0 + 9.8 + 10.0 + 10.7}{5} = \frac{52}{5} = 10.4 μ = 5 10.5 + 11.0 + 9.8 + 10.0 + 10.7 ​ = 5 52 ​ = 10.4
Calculate the variance :
\begin{align*}
σ^2 & = \frac{1}{5-1} [(10.5 - 10.4)^2 + (11.0 - 10.4)^2 + (9.8 - 10.4)^2 + (10.0 - 10.4)^2 + (10.7 - 10.4)^2] \\
& = \frac{1}{4} [(0.1)^2 + (0.6)^2 + (-0.6)^2 + (-0.4)^2 + (0.3)^2] \\
& = \frac{1}{4} [0.01 + 0.36 + 0.36 + 0.16 + 0.09] \\
& = \frac{0.98}{4} ≈ 0.245
\end{align*} σ 2 = 1 5 − 1 [ ( 10.5 − 10.4 ) 2 + ( 11.0 − 10.4 ) 2 + ( 9.8 − 10.4 ) 2 + ( 10.0 − 10.4 ) 2 + ( 10.7 − 10.4 ) 2 ] = 1 4 [ ( 0.1 ) 2 + ( 0.6 ) 2 + ( − 0.6 ) 2 + ( − 0.4 ) 2 + ( 0.3 ) 2 ] = 1 4 [ 0.01 + 0.36 + 0.36 + 0.16 + 0.09 ] = 0.98 4 ≈ 0.245 \begin{align*}
σ^2 & = \frac{1}{5-1} [(10.5 - 10.4)^2 + (11.0 - 10.4)^2 + (9.8 - 10.4)^2 + (10.0 - 10.4)^2 + (10.7 - 10.4)^2] \\
& = \frac{1}{4} [(0.1)^2 + (0.6)^2 + (-0.6)^2 + (-0.4)^2 + (0.3)^2] \\
& = \frac{1}{4} [0.01 + 0.36 + 0.36 + 0.16 + 0.09] \\
& = \frac{0.98}{4} ≈ 0.245
\end{align*} σ 2 ​ = 5 − 1 1 ​ [( 10.5 − 10.4 ) 2 + ( 11.0 − 10.4 ) 2 + ( 9.8 − 10.4 ) 2 + ( 10.0 − 10.4 ) 2 + ( 10.7 − 10.4 ) 2 ] = 4 1 ​ [( 0.1 ) 2 + ( 0.6 ) 2 + ( − 0.6 ) 2 + ( − 0.4 ) 2 + ( 0.3 ) 2 ] = 4 1 ​ [ 0.01 + 0.36 + 0.36 + 0.16 + 0.09 ] = 4 0.98 ​ ≈ 0.245 ​
Calculate the standard deviation :
σ ≈ √0.245 ≈ 0.495. σ ≈ √ 0.245 ≈ 0.495. σ ≈ √0.245 ≈ 0.495. σ ≈ √0.245 ≈ 0.495.
Result:
The standard deviation of the data set is approximately σ ≈ 0.495 σ ≈ 0.495 σ ≈ 0.495 σ ≈ 0.495 .
Commenti
Posta un commento