Versione italiana
Esercizi sugli endomorfismi
Teoria degli Endomorfismi
Definizione
Un endomorfismo è un tipo di mappatura (o trasformazione) che agisce su uno spazio vettoriale e restituisce un altro vettore nello stesso spazio. Formalmente, se V V V V è uno spazio vettoriale su un campo K K K K , un endomorfismo T: V \to V T : V → V T: V \to V T : V → V è una funzione lineare tale che:
Linearità : Per ogni u, v \in V u , v ∈ V u, v \in V u , v ∈ V e a \in K a ∈ K a \in K a ∈ K , si ha:
T(u + v) = T(u) + T(v) T ( u + v ) = T ( u ) + T ( v ) T(u + v) = T(u) + T(v) T ( u + v ) = T ( u ) + T ( v )
T(au) = aT(u) T ( a u ) = a T ( u ) T(au) = aT(u) T ( a u ) = a T ( u )
Proprietà degli Endomorfismi
Matrice Associata : Ogni endomorfismo può essere rappresentato da una matrice rispetto a una base dello spazio vettoriale. Se T T T T è un endomorfismo e B = \{v_1, v_2, ..., v_n\} B = { v 1 , v 2 , . . . , v n } B = \{v_1, v_2, ..., v_n\} B = { v 1 ​ , v 2 ​ , ... , v n ​ } è una base di V V V V , allora esiste una matrice A A A A tale che:
[T(v_i)] = A[v_i] [ T ( v i ) ] = A [ v i ] [T(v_i)] = A[v_i] [ T ( v i ​ )] = A [ v i ​ ]
Determinante e Invertibilità : Un endomorfismo è invertibile se e solo se la sua matrice associata ha determinante diverso da zero.
Autovalori e Autovettori : Gli autovalori di un endomorfismo sono i valori scalari \lambda λ \lambda λ per cui esiste un vettore non nullo v v v v tale che:
T(v) = \lambda v T ( v ) = λ v T(v) = \lambda v T ( v ) = λ v
Esercizi sugli Endomorfismi
Esercizio 1: Verifica della Linearità
Sia T: \mathbb{R}^2 \to \mathbb{R}^2 T : R 2 → R 2 T: \mathbb{R}^2 \to \mathbb{R}^2 T : R 2 → R 2 definito da:
T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + 3y \\ 4x - y \end{pmatrix} T ( x y ) = ( 2 x + 3 y 4 x − y ) T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + 3y \\ 4x - y \end{pmatrix} T ( x y ​ ) = ( 2 x + 3 y 4 x − y ​ )
Verifica se T T T T è un endomorfismo.
Soluzione :
Per verificare la linearità, controlliamo le due proprietà:
Additività :
Siano u = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} u = ( x 1 y 1 ) u = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} u = ( x 1 ​ y 1 ​ ​ ) e v = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} v = ( x 2 y 2 ) v = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} v = ( x 2 ​ y 2 ​ ​ ) :
T(u + v) = T\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} =
\begin{pmatrix} 2(x_1 + x_2) + 3(y_1 + y_2) \\ 4(x_1 + x_2) - (y_1 + y_2) \end{pmatrix} T ( u + v ) = T ( x 1 + x 2 y 1 + y 2 ) = ( 2 ( x 1 + x 2 ) + 3 ( y 1 + y 2 ) 4 ( x 1 + x 2 ) − ( y 1 + y 2 ) ) T(u + v) = T\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} =
\begin{pmatrix} 2(x_1 + x_2) + 3(y_1 + y_2) \\ 4(x_1 + x_2) - (y_1 + y_2) \end{pmatrix} T ( u + v ) = T ( x 1 ​ + x 2 ​ y 1 ​ + y 2 ​ ​ ) = ( 2 ( x 1 ​ + x 2 ​ ) + 3 ( y 1 ​ + y 2 ​ ) 4 ( x 1 ​ + x 2 ​ ) − ( y 1 ​ + y 2 ​ ) ​ )
=
\begin{pmatrix} 2x_1 + 3y_1 \\ 4x_1 - y_1 \end{pmatrix} +
\begin{pmatrix} 2x_2 + 3y_2 \\ 4x_2 - y_2 \end{pmatrix} = ( 2 x 1 + 3 y 1 4 x 1 − y 1 ) + ( 2 x 2 + 3 y 2 4 x 2 − y 2 ) =
\begin{pmatrix} 2x_1 + 3y_1 \\ 4x_1 - y_1 \end{pmatrix} +
\begin{pmatrix} 2x_2 + 3y_2 \\ 4x_2 - y_2 \end{pmatrix} = ( 2 x 1 ​ + 3 y 1 ​ 4 x 1 ​ − y 1 ​ ​ ) + ( 2 x 2 ​ + 3 y 2 ​ 4 x 2 ​ − y 2 ​ ​ )
= T(u) + T(v) = T ( u ) + T ( v ) = T(u) + T(v) = T ( u ) + T ( v )
Omogeneità :
Sia a \in \mathbb{R} a ∈ R a \in \mathbb{R} a ∈ R :T(a u) = T\begin{pmatrix} ax \\ ay \end{pmatrix} =
\begin{pmatrix} 2(ax) + 3(ay) \\ 4(ax) - (ay) \end{pmatrix} T ( a u ) = T ( a x a y ) = ( 2 ( a x ) + 3 ( a y ) 4 ( a x ) − ( a y ) ) T(a u) = T\begin{pmatrix} ax \\ ay \end{pmatrix} =
\begin{pmatrix} 2(ax) + 3(ay) \\ 4(ax) - (ay) \end{pmatrix} T ( a u ) = T ( a x a y ​ ) = ( 2 ( a x ) + 3 ( a y ) 4 ( a x ) − ( a y ) ​ )
= a\begin{pmatrix} 2x + 3y \\ 4x - y \end{pmatrix} = a ( 2 x + 3 y 4 x − y ) = a\begin{pmatrix} 2x + 3y \\ 4x - y \end{pmatrix} = a ( 2 x + 3 y 4 x − y ​ )
= aT(u) = a T ( u ) = aT(u) = a T ( u )
Poiché entrambe le proprietà sono verificate, T T T T è un endomorfismo.
Esercizio 2: Matrice Associata
Trova la matrice associata all’endormofismo definito da:
T\begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} x + 2y \\ 3y - z \\ z + x^2 - y^2\end{pmatrix} T ( x y z ) = ( x + 2 y 3 y − z z + x 2 − y 2 ) T\begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} x + 2y \\ 3y - z \\ z + x^2 - y^2\end{pmatrix} T ​ x y z ​ ​ = ​ x + 2 y 3 y − z z + x 2 − y 2 ​ ​
Soluzione :
Per trovare la matrice associata, dobbiamo esprimere l’output di T(v_i) T ( v i ) T(v_i) T ( v i ​ ) , dove i vettori della base canonica sono:
v_1 = (1,0,0)^T, v_2 = (0,1,0)^T, v_3 = (0,0,1)^T v 1 = ( 1 , 0 , 0 ) T , v 2 = ( 0 , 1 , 0 ) T , v 3 = ( 0 , 0 , 1 ) T v_1 = (1,0,0)^T, v_2 = (0,1,0)^T, v_3 = (0,0,1)^T v 1 ​ = ( 1 , 0 , 0 ) T , v 2 ​ = ( 0 , 1 , 0 ) T , v 3 ​ = ( 0 , 0 , 1 ) T .
Calcoliamo:
T(v_1) = T(1,0,0)^T = (1,0,0)^T T ( v 1 ) = T ( 1 , 0 , 0 ) T = ( 1 , 0 , 0 ) T T(v_1) = T(1,0,0)^T = (1,0,0)^T T ( v 1 ​ ) = T ( 1 , 0 , 0 ) T = ( 1 , 0 , 0 ) T
T(v_2) = T(0,1,0)^T = (2,-1,0)^T T ( v 2 ) = T ( 0 , 1 , 0 ) T = ( 2 , − 1 , 0 ) T T(v_2) = T(0,1,0)^T = (2,-1,0)^T T ( v 2 ​ ) = T ( 0 , 1 , 0 ) T = ( 2 , − 1 , 0 ) T
T(v_3) = T(0,0,1)^T = (0,0,1)^T T ( v 3 ) = T ( 0 , 0 , 1 ) T = ( 0 , 0 , 1 ) T T(v_3) = T(0,0,1)^T = (0,0,1)^T T ( v 3 ​ ) = T ( 0 , 0 , 1 ) T = ( 0 , 0 , 1 ) T
La matrice associata sarà quindi:
A =
\begin{pmatrix}
1 & 2 & 0\\
0 & 3 & -1\\
0 & 0 & 1
\end{pmatrix} A = ( 1 2 0 0 3 − 1 0 0 1 ) A =
\begin{pmatrix}
1 & 2 & 0\\
0 & 3 & -1\\
0 & 0 & 1
\end{pmatrix} A = ​ 1 0 0 ​ 2 3 0 ​ 0 − 1 1 ​ ​
Esercizio 3: Autovalori e Autovettori
Considera l’endomorfismo definito dalla matrice:
A =
\begin{pmatrix}
4 & 1\\
0 & 3
\end{pmatrix} A = ( 4 1 0 3 ) A =
\begin{pmatrix}
4 & 1\\
0 & 3
\end{pmatrix} A = ( 4 0 ​ 1 3 ​ )
Trova gli autovalori e gli autovettori di questo endomorfismo.
Soluzione :
Calcoliamo il polinomio caratteristico:
det(A - λI) =
det\begin{pmatrix}
4 - λ & 1\\
0 & 3 - λ
\end{pmatrix}
= (4 - λ)(3 - λ) d e t ( A − λ I ) = d e t ( 4 − λ 1 0 3 − λ ) = ( 4 − λ ) ( 3 − λ ) det(A - λI) =
det\begin{pmatrix}
4 - λ & 1\\
0 & 3 - λ
\end{pmatrix}
= (4 - λ)(3 - λ) d e t ( A − λ I ) = d e t ( 4 − λ 0 ​ 1 3 − λ ​ ) = ( 4 − λ ) ( 3 − λ )
Impostiamo il determinante uguale a zero per trovare gli autovalori:
(4 - λ)(3 - λ) = 0 ( 4 − λ ) ( 3 − λ ) = 0 (4 - λ)(3 - λ) = 0 ( 4 − λ ) ( 3 − λ ) = 0
Gli autovalori sono:
λ_1 = 4 λ 1 = 4 λ_1 = 4 λ 1 ​ = 4
λ_2 = 3 λ 2 = 3 λ_2 = 3 λ 2 ​ = 3
Ora troviamo gli autovettori associati.
Per λ_1 = 4 λ 1 = 4 λ_1 = 4 λ 1 ​ = 4 :
(A - 4I)v =
\begin{pmatrix}
0 & 1\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix}=
\begin{pmatrix}
0\\
0
\end{pmatrix} ( A − 4 I ) v = ( 0 1 0 − 1 ) ( x y ) = ( 0 0 ) (A - 4I)v =
\begin{pmatrix}
0 & 1\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix}=
\begin{pmatrix}
0\\
0
\end{pmatrix} ( A − 4 I ) v = ( 0 0 ​ 1 − 1 ​ ) ( x y ​ ) = ( 0 0 ​ )
Da cui otteniamo che gli autovettori sono della forma:
v_1 =
\begin{pmatrix}
t\\
0
\end{pmatrix}, t ≠ 0 v 1 = ( t 0 ) , t ≠ 0 v_1 =
\begin{pmatrix}
t\\
0
\end{pmatrix}, t ≠ 0 v 1 ​ = ( t 0 ​ ) , t = 0
Per λ_2 = 3 λ 2 = 3 λ_2 = 3 λ 2 ​ = 3 :
(A - 3I)v =
\begin{pmatrix}
1 & 1\\
0 & 0
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix}=
\begin{pmatrix}
0\\
0
\end{pmatrix} ( A − 3 I ) v = ( 1 1 0 0 ) ( x y ) = ( 0 0 ) (A - 3I)v =
\begin{pmatrix}
1 & 1\\
0 & 0
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix}=
\begin{pmatrix}
0\\
0
\end{pmatrix} ( A − 3 I ) v = ( 1 0 ​ 1 0 ​ ) ( x y ​ ) = ( 0 0 ​ )
Da cui otteniamo che gli autovettori sono della forma:
v_2 =
\begin{pmatrix}
-t\\
t
\end{pmatrix}, t ≠ 0 v 2 = ( − t t ) , t ≠ 0 v_2 =
\begin{pmatrix}
-t\\
t
\end{pmatrix}, t ≠ 0 v 2 ​ = ( − t t ​ ) , t = 0
Esercizio 4: Composizione di Endomorfismi
Siano dati due endomorfismi in uno spazio vettoriale definito dalle seguenti matrici:
A =
\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix}, B =
\begin{pmatrix}
5 & 6\\
7 & 8
\end{pmatrix}. A = ( 1 2 3 4 ) , B = ( 5 6 7 8 ) . A =
\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix}, B =
\begin{pmatrix}
5 & 6\\
7 & 8
\end{pmatrix}. A = ( 1 3 ​ 2 4 ​ ) , B = ( 5 7 ​ 6 8 ​ ) .
Calcola la matrice dell’endomorfismo risultante dalla composizione C = B A C = B A C = B A C = B A .
Soluzione :
Calcoliamo il prodotto delle matrici:
C = BA =
\begin{pmatrix}
5 & 6\\
7 & 8
\end{pmatrix}\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix} =
\begin{pmatrix}
5*1 +6*3 &5*2+6*4\\
7*1+8*3&7*2+8*4
\end{pmatrix}=
\begin{pmatrix}
5+18&10+24\\
7+24&14+32
\end{pmatrix}=
\begin {pmatrix}
23&34\\
31&46
\end {pmatrix} C = B A = ( 5 6 7 8 ) ( 1 2 3 4 ) = ( 5 ∗ 1 + 6 ∗ 3 5 ∗ 2 + 6 ∗ 4 7 ∗ 1 + 8 ∗ 3 7 ∗ 2 + 8 ∗ 4 ) = ( 5 + 18 10 + 24 7 + 24 14 + 32 ) = ( 23 34 31 46 ) C = BA =
\begin{pmatrix}
5 & 6\\
7 & 8
\end{pmatrix}\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix} =
\begin{pmatrix}
5*1 +6*3 &5*2+6*4\\
7*1+8*3&7*2+8*4
\end{pmatrix}=
\begin{pmatrix}
5+18&10+24\\
7+24&14+32
\end{pmatrix}=
\begin {pmatrix}
23&34\\
31&46
\end {pmatrix} C = B A = ( 5 7 ​ 6 8 ​ ) ( 1 3 ​ 2 4 ​ ) = ( 5 ∗ 1 + 6 ∗ 3 7 ∗ 1 + 8 ∗ 3 ​ 5 ∗ 2 + 6 ∗ 4 7 ∗ 2 + 8 ∗ 4 ​ ) = ( 5 + 18 7 + 24 ​ 10 + 24 14 + 32 ​ ) = ( 23 31 ​ 34 46 ​ )
La matrice dell’endomorfismo risultante dalla composizione è:
C =
\begin {pmatrix}
23 & 34 \\
31 & 46
\end {pmatrix} C = ( 23 34 31 46 ) C =
\begin {pmatrix}
23 & 34 \\
31 & 46
\end {pmatrix} C = ( 23 31 ​ 34 46 ​ )
English version
Endomorphism Exercises
Endomorphism Theory
Definition
An endomorphism is a type of mapping (or transformation) that acts on a vector space and returns another vector in the same space. Formally, if V V V V is a vector space over a field K K K K , an endomorphism T: V \to V T : V → V T: V \to V T : V → V is a linear function such that:
Linearity : For every u, v \in V u , v ∈ V u, v \in V u , v ∈ V and a \in K a ∈ K a \in K a ∈ K , we have:
T(u + v) = T(u) + T(v) T ( u + v ) = T ( u ) + T ( v ) T(u + v) = T(u) + T(v) T ( u + v ) = T ( u ) + T ( v )
T(au) = aT(u) T ( a u ) = a T ( u ) T(au) = aT(u) T ( a u ) = a T ( u )
Properties of Endomorphisms
Associated Matrix : Every endomorphism can be represented by a matrix with respect to a basis of the vector space. If T T T T is an endomorphism and B = \{v_1, v_2, ..., v_n\} B = { v 1 , v 2 , . . . , v n } B = \{v_1, v_2, ..., v_n\} B = { v 1 ​ , v 2 ​ , ... , v n ​ } is a basis of V V V V , then there exists a matrix A A A A such that:
[T(v_i)] = A[v_i] [ T ( v i ) ] = A [ v i ] [T(v_i)] = A[v_i] [ T ( v i ​ )] = A [ v i ​ ]
Determinant and Invertibility : An endomorphism is invertible if and only if its associated matrix has a determinant other than zero.
Eigenvalues ​​and Eigenvectors : The eigenvalues ​​of an endomorphism are the scalar values ​​\lambda λ \lambda λ for which there exists a non-zero vector v v v v such that:
T(v) = \lambda v T ( v ) = λ v T(v) = \lambda v T ( v ) = λ v
Exercises on Endomorphisms
Exercise 1: Checking Linearity
Let T: \mathbb{R}^2 \to \mathbb{R}^2 T : R 2 → R 2 T: \mathbb{R}^2 \to \mathbb{R}^2 T : R 2 → R 2 defined by:
T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + 3y \\ 4x - y \end{pmatrix} T ( x y ) = ( 2 x + 3 y 4 x − y ) T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + 3y \\ 4x - y \end{pmatrix} T ( x y ​ ) = ( 2 x + 3 y 4 x − y ​ )
Check if T T T T is an endomorphism.
Solution :
To check for linearity, we check the two properties:
Additivity :
Let u = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} u = ( x 1 y 1 ) u = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} u = ( x 1 ​ y 1 ​ ​ ) and v = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} v = ( x 2 y 2 ) v = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} v = ( x 2 ​ y 2 ​ ​ ) :
T(u + v) = T\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} =
\begin{pmatrix} 2(x_1 + x_2) + 3(y_1 + y_2) \\ 4(x_1 + x_2) - (y_1 + y_2) \end{pmatrix} T ( u + v ) = T ( x 1 + x 2 y 1 + y 2 ) = ( 2 ( x 1 + x 2 ) + 3 ( y 1 + y 2 ) 4 ( x 1 + x 2 ) − ( y 1 + y 2 ) ) T(u + v) = T\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} =
\begin{pmatrix} 2(x_1 + x_2) + 3(y_1 + y_2) \\ 4(x_1 + x_2) - (y_1 + y_2) \end{pmatrix} T ( u + v ) = T ( x 1 ​ + x 2 ​ y 1 ​ + y 2 ​ ​ ) = ( 2 ( x 1 ​ + x 2 ​ ) + 3 ( y 1 ​ + y 2 ​ ) 4 ( x 1 ​ + x 2 ​ ) − ( y 1 ​ + y 2 ​ ) ​ )
=
\begin{pmatrix} 2x_1 + 3y_1 \\ 4x_1 - y_1 \end{pmatrix} +
\begin{pmatrix} 2x_2 + 3y_2 \\ 4x_2 - y_2 \end{pmatrix} = ( 2 x 1 + 3 y 1 4 x 1 − y 1 ) + ( 2 x 2 + 3 y 2 4 x 2 − y 2 ) =
\begin{pmatrix} 2x_1 + 3y_1 \\ 4x_1 - y_1 \end{pmatrix} +
\begin{pmatrix} 2x_2 + 3y_2 \\ 4x_2 - y_2 \end{pmatrix} = ( 2 x 1 ​ + 3 y 1 ​ 4 x 1 ​ − y 1 ​ ​ ) + ( 2 x 2 ​ + 3 y 2 ​ 4 x 2 ​ − y 2 ​ ​ )
= T(u) + T(v) = T ( u ) + T ( v ) = T(u) + T(v) = T ( u ) + T ( v )
Homogeneity :
Let a \in \mathbb{R} a ∈ R a \in \mathbb{R} a ∈ R :
T(a u) = T\begin{pmatrix} ax \\ ay \end{pmatrix} =
\begin{pmatrix} 2(ax) + 3(ay) \\ 4(ax) - (ay) \end{pmatrix} T ( a u ) = T ( a x a y ) = ( 2 ( a x ) + 3 ( a y ) 4 ( a x ) − ( a y ) ) T(a u) = T\begin{pmatrix} ax \\ ay \end{pmatrix} =
\begin{pmatrix} 2(ax) + 3(ay) \\ 4(ax) - (ay) \end{pmatrix} T ( a u ) = T ( a x a y ​ ) = ( 2 ( a x ) + 3 ( a y ) 4 ( a x ) − ( a y ) ​ )
= a\begin{pmatrix} 2x + 3y \\ 4x - y \end{pmatrix} = a ( 2 x + 3 y 4 x − y ) = a\begin{pmatrix} 2x + 3y \\ 4x - y \end{pmatrix} = a ( 2 x + 3 y 4 x − y ​ )
= aT(u) = a T ( u ) = aT(u) = a T ( u )
Since both properties are true, T T T T is a endomorphism.
Exercise 2: Associated Matrix
Find the matrix associated with the endomorphism defined by:
T\begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} x + 2y \\ 3y - z \\ z + x^2 - y^2\end{pmatrix} T ( x y z ) = ( x + 2 y 3 y − z z + x 2 − y 2 ) T\begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} x + 2y \\ 3y - z \\ z + x^2 - y^2\end{pmatrix} T ​ x y z ​ ​ = ​ x + 2 y 3 y − z z + x 2 − y 2 ​ ​
Solution :
To find the associated matrix, we need to express the output of T(v_i) T ( v i ) T(v_i) T ( v i ​ ) , where the canonical basis vectors are:
v_1 = (1,0,0)^T, v_2 = (0,1,0)^T, v_3 = (0,0,1)^T v 1 = ( 1 , 0 , 0 ) T , v 2 = ( 0 , 1 , 0 ) T , v 3 = ( 0 , 0 , 1 ) T v_1 = (1,0,0)^T, v_2 = (0,1,0)^T, v_3 = (0,0,1)^T v 1 ​ = ( 1 , 0 , 0 ) T , v 2 ​ = ( 0 , 1 , 0 ) T , v 3 ​ = ( 0 , 0 , 1 ) T .
Let’s calculate:
T(v_1) = T(1,0,0)^T = (1,0,0)^T T ( v 1 ) = T ( 1 , 0 , 0 ) T = ( 1 , 0 , 0 ) T T(v_1) = T(1,0,0)^T = (1,0,0)^T T ( v 1 ​ ) = T ( 1 , 0 , 0 ) T = ( 1 , 0 , 0 ) T
T(v_2) = T(0,1,0)^T = (2,-1,0)^T T ( v 2 ) = T ( 0 , 1 , 0 ) T = ( 2 , − 1 , 0 ) T T(v_2) = T(0,1,0)^T = (2,-1,0)^T T ( v 2 ​ ) = T ( 0 , 1 , 0 ) T = ( 2 , − 1 , 0 ) T
T(v_3) = T(0,0,1)^T = (0,0,1)^T T ( v 3 ) = T ( 0 , 0 , 1 ) T = ( 0 , 0 , 1 ) T T(v_3) = T(0,0,1)^T = (0,0,1)^T T ( v 3 ​ ) = T ( 0 , 0 , 1 ) T = ( 0 , 0 , 1 ) T
The associated matrix will then be:
A =
\begin{pmatrix}
1 & 2 & 0\\
0 & 3 & -1\\
0 & 0 & 1
\end{pmatrix} A = ( 1 2 0 0 3 − 1 0 0 1 ) A =
\begin{pmatrix}
1 & 2 & 0\\
0 & 3 & -1\\
0 & 0 & 1
\end{pmatrix} A = ​ 1 0 0 ​ 2 3 0 ​ 0 − 1 1 ​ ​
Exercise 3: Eigenvalues ​​and Eigenvectors
Consider the endomorphism defined by the matrix:
A =
\begin{pmatrix}
4 & 1\\
0 & 3
\end{pmatrix} A = ( 4 1 0 3 ) A =
\begin{pmatrix}
4 & 1\\
0 & 3
\end{pmatrix} A = ( 4 0 ​ 1 3 ​ )
Find the eigenvalues ​​and the eigenvectors of this endomorphism.
Solution :
Let’s calculate the characteristic polynomial:
det(A - λI) =
det\begin{pmatrix}
4 - λ & 1\\
0 & 3 - λ
\end{pmatrix}
= (4 - λ)(3 - λ) d e t ( A − λ I ) = d e t ( 4 − λ 1 0 3 − λ ) = ( 4 − λ ) ( 3 − λ ) det(A - λI) =
det\begin{pmatrix}
4 - λ & 1\\
0 & 3 - λ
\end{pmatrix}
= (4 - λ)(3 - λ) d e t ( A − λ I ) = d e t ( 4 − λ 0 ​ 1 3 − λ ​ ) = ( 4 − λ ) ( 3 − λ )
Let’s set the determinant equal to zero to find the eigenvalues:
(4 - λ)(3 - λ) = 0 ( 4 − λ ) ( 3 − λ ) = 0 (4 - λ)(3 - λ) = 0 ( 4 − λ ) ( 3 − λ ) = 0
The eigenvalues ​​are:
λ_1 = 4 λ 1 = 4 λ_1 = 4 λ 1 ​ = 4
λ_2 = 3 λ 2 = 3 λ_2 = 3 λ 2 ​ = 3
Now let’s find the associated eigenvectors.
For λ_1 = 4 λ 1 = 4 λ_1 = 4 λ 1 ​ = 4 :
(A - 4I)v =
\begin{pmatrix}
0 & 1\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix}=
\begin{pmatrix}
0\\
0
\end{pmatrix} ( A − 4 I ) v = ( 0 1 0 − 1 ) ( x y ) = ( 0 0 ) (A - 4I)v =
\begin{pmatrix}
0 & 1\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix}=
\begin{pmatrix}
0\\
0
\end{pmatrix} ( A − 4 I ) v = ( 0 0 ​ 1 − 1 ​ ) ( x y ​ ) = ( 0 0 ​ )
From which we obtain that the eigenvectors are of the form:
v_1 =
\begin{pmatrix}
t\\
0
\end{pmatrix}, t ≠ 0 v 1 = ( t 0 ) , t ≠ 0 v_1 =
\begin{pmatrix}
t\\
0
\end{pmatrix}, t ≠ 0 v 1 ​ = ( t 0 ​ ) , t = 0
For λ_2 = 3 λ 2 = 3 λ_2 = 3 λ 2 ​ = 3 :
(A - 3I)v =
\begin{pmatrix}
1 & 1\\
0 & 0
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix}=
\begin{pmatrix}
0\\
0
\end{pmatrix} ( A − 3 I ) v = ( 1 1 0 0 ) ( x y ) = ( 0 0 ) (A - 3I)v =
\begin{pmatrix}
1 & 1\\
0 & 0
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix}=
\begin{pmatrix}
0\\
0
\end{pmatrix} ( A − 3 I ) v = ( 1 0 ​ 1 0 ​ ) ( x y ​ ) = ( 0 0 ​ )
From which we obtain that the eigenvectors are of the form:
v_2 =
\begin{pmatrix}
-t\\
t
\end{pmatrix}, t ≠ 0 v 2 = ( − t t ) , t ≠ 0 v_2 =
\begin{pmatrix}
-t\\
t
\end{pmatrix}, t ≠ 0 v 2 ​ = ( − t t ​ ) , t = 0
Exercise 4: Composition of Endomorphisms
Let two endomorphisms be given in a vector space defined by the following matrices:
A =
\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix}, B =
\begin{pmatrix}
5 & 6\\
7 & 8
\end{pmatrix}. A = ( 1 2 3 4 ) , B = ( 5 6 7 8 ) . A =
\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix}, B =
\begin{pmatrix}
5 & 6\\
7 & 8
\end{pmatrix}. A = ( 1 3 ​ 2 4 ​ ) , B = ( 5 7 ​ 6 8 ​ ) .
Compute the endomorphism matrix resulting from the composition C = B A C = B A C = B A C = B A .
Solution :
Let’s calculate the product of the matrices:
C = BA =
\begin{pmatrix}
5 & 6\\
7 & 8
\end{pmatrix}\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix} =
\begin{pmatrix}
5*1 +6*3 &5*2+6*4\\
7*1+8*3&7*2+8*4
\end{pmatrix}=
\begin{pmatrix}
5+18&10+24\\
7+24&14+32
\end{pmatrix}=
\begin {pmatrix}
23&34\\
31&46
\end {pmatrix} C = B A = ( 5 6 7 8 ) ( 1 2 3 4 ) = ( 5 ∗ 1 + 6 ∗ 3 5 ∗ 2 + 6 ∗ 4 7 ∗ 1 + 8 ∗ 3 7 ∗ 2 + 8 ∗ 4 ) = ( 5 + 18 10 + 24 7 + 24 14 + 32 ) = ( 23 34 31 46 ) C = BA =
\begin{pmatrix}
5 & 6\\
7 & 8
\end{pmatrix}\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix} =
\begin{pmatrix}
5*1 +6*3 &5*2+6*4\\
7*1+8*3&7*2+8*4
\end{pmatrix}=
\begin{pmatrix}
5+18&10+24\\
7+24&14+32
\end{pmatrix}=
\begin {pmatrix}
23&34\\
31&46
\end {pmatrix} C = B A = ( 5 7 ​ 6 8 ​ ) ( 1 3 ​ 2 4 ​ ) = ( 5 ∗ 1 + 6 ∗ 3 7 ∗ 1 + 8 ∗ 3 ​ 5 ∗ 2 + 6 ∗ 4 7 ∗ 2 + 8 ∗ 4 ​ ) = ( 5 + 18 7 + 24 ​ 10 + 24 14 + 32 ​ ) = ( 23 31 ​ 34 46 ​ )
The endomorphism matrix resulting from the composition is:
C =
\begin {pmatrix}
23 & 34 \\
31 & 46
\end {pmatrix} C = ( 23 34 31 46 ) C =
\begin {pmatrix}
23 & 34 \\
31 & 46
\end {pmatrix} C = ( 23 31 ​ 34 46 ​ )
Commenti
Posta un commento