Versione italiana
Esercizi sull'area di un triangolo con le matrici
Area di un Triangolo con Matrici
Introduzione
L'area di un triangolo può essere calcolata utilizzando le coordinate dei suoi vertici. Se i vertici del triangolo sono dati dai punti A(x_1, y_1) A ( x 1 , y 1 ) A(x_1, y_1) A ( x 1 ​ , y 1 ​ ) , B(x_2, y_2) B ( x 2 , y 2 ) B(x_2, y_2) B ( x 2 ​ , y 2 ​ ) , e C(x_3, y_3) C ( x 3 , y 3 ) C(x_3, y_3) C ( x 3 ​ , y 3 ​ ) , l'area A del triangolo può essere calcolata con la seguente formula:
A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| A = 1 2 ∣ x 1 ( y 2 − y 3 ) + x 2 ( y 3 − y 1 ) + x 3 ( y 1 − y 2 ) ∣ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| A = 2 1 ​ ∣ x 1 ​ ( y 2 ​ − y 3 ​ ) + x 2 ​ ( y 3 ​ − y 1 ​ ) + x 3 ​ ( y 1 ​ − y 2 ​ ) ∣
Utilizzo delle Matrici
Possiamo anche utilizzare le matrici per calcolare l'area del triangolo. L'area può essere espressa come il determinante di una matrice 3x3:
A = \frac{1}{2} \left| \begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{vmatrix} \right| A = 1 2 ∣ ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ ∣ A = \frac{1}{2} \left| \begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{vmatrix} \right| A = 2 1 ​ ​ ​ x 1 ​ x 2 ​ x 3 ​ ​ y 1 ​ y 2 ​ y 3 ​ ​ 1 1 1 ​ ​ ​
Determinante della Matrice
Il determinante della matrice è calcolato come segue:
\begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{vmatrix} = x_1(y_2 - y_3) - y_1(x_2 - x_3) + 1(x_2y_3 - x_3y_2) ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ = x 1 ( y 2 − y 3 ) − y 1 ( x 2 − x 3 ) + 1 ( x 2 y 3 − x 3 y 2 ) \begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{vmatrix} = x_1(y_2 - y_3) - y_1(x_2 - x_3) + 1(x_2y_3 - x_3y_2) ​ x 1 ​ x 2 ​ x 3 ​ ​ y 1 ​ y 2 ​ y 3 ​ ​ 1 1 1 ​ ​ = x 1 ​ ( y 2 ​ − y 3 ​ ) − y 1 ​ ( x 2 ​ − x 3 ​ ) + 1 ( x 2 ​ y 3 ​ − x 3 ​ y 2 ​ )
Esercizi
Esercizio 1: Calcolo dell'Area di un Triangolo
Problema : Calcola l'area del triangolo con vertici A(1, 2) A ( 1 , 2 ) A(1, 2) A ( 1 , 2 ) , B(4, 5) B ( 4 , 5 ) B(4, 5) B ( 4 , 5 ) , e C(7, 2) C ( 7 , 2 ) C(7, 2) C ( 7 , 2 ) .
Soluzione :
Scrivi i vertici:
A(1, 2) A ( 1 , 2 ) A(1, 2) A ( 1 , 2 )
B(4, 5) B ( 4 , 5 ) B(4, 5) B ( 4 , 5 )
C(7, 2) C ( 7 , 2 ) C(7, 2) C ( 7 , 2 )
Costruisci la matrice:
M = \begin{bmatrix}
1 & 2 & 1 \\
4 & 5 & 1 \\
7 & 2 & 1
\end{bmatrix} M = [ 1 2 1 4 5 1 7 2 1 ] M = \begin{bmatrix}
1 & 2 & 1 \\
4 & 5 & 1 \\
7 & 2 & 1
\end{bmatrix} M = ​ 1 4 7 ​ 2 5 2 ​ 1 1 1 ​ ​
Calcola il determinante:
\text{det}(M) = 1(5 - 2) - 2(4 - 7) + 1(4 \cdot 2 - 5 \cdot 7) det ( M ) = 1 ( 5 − 2 ) − 2 ( 4 − 7 ) + 1 ( 4 ⋅ 2 − 5 ⋅ 7 ) \text{det}(M) = 1(5 - 2) - 2(4 - 7) + 1(4 \cdot 2 - 5 \cdot 7) det ( M ) = 1 ( 5 − 2 ) − 2 ( 4 − 7 ) + 1 ( 4 ⋅ 2 − 5 ⋅ 7 )
= 1(3) - 2(-3) + 1(8 - 35) = 1 ( 3 ) − 2 ( − 3 ) + 1 ( 8 − 35 ) = 1(3) - 2(-3) + 1(8 - 35) = 1 ( 3 ) − 2 ( − 3 ) + 1 ( 8 − 35 )
= 3 + 6 - 27 = -18 = 3 + 6 − 27 = − 18 = 3 + 6 - 27 = -18 = 3 + 6 − 27 = − 18
Calcola l'area:
A = \frac{1}{2} \left| -18 \right| = \frac{18}{2} = 9 A = 1 2 ∣ − 18 ∣ = 18 2 = 9 A = \frac{1}{2} \left| -18 \right| = \frac{18}{2} = 9 A = 2 1 ​ ∣ − 18 ∣ = 2 18 ​ = 9
Esercizio 2: Area di un Triangolo con Vertici Negativi
Problema : Calcola l'area del triangolo con vertici A(-1, -1) A ( − 1 , − 1 ) A(-1, -1) A ( − 1 , − 1 ) , B(-4, -5) B ( − 4 , − 5 ) B(-4, -5) B ( − 4 , − 5 ) , e C(-7, -1) C ( − 7 , − 1 ) C(-7, -1) C ( − 7 , − 1 ) .
Soluzione :
Scrivi i vertici:
A(-1, -1) A ( − 1 , − 1 ) A(-1, -1) A ( − 1 , − 1 )
B(-4, -5) B ( − 4 , − 5 ) B(-4, -5) B ( − 4 , − 5 )
C(-7, -1) C ( − 7 , − 1 ) C(-7, -1) C ( − 7 , − 1 )
Costruisci la matrice:
M = \begin{bmatrix}
-1 & -1 & 1 \\
-4 & -5 & 1 \\
-7 & -1 & 1
\end{bmatrix} M = [ − 1 − 1 1 − 4 − 5 1 − 7 − 1 1 ] M = \begin{bmatrix}
-1 & -1 & 1 \\
-4 & -5 & 1 \\
-7 & -1 & 1
\end{bmatrix} M = ​ − 1 − 4 − 7 ​ − 1 − 5 − 1 ​ 1 1 1 ​ ​
Calcola il determinante:
\text{det}(M) = -1(-4) - (-1)(3) + 1(4 - 35) det ( M ) = − 1 ( − 4 ) − ( − 1 ) ( 3 ) + 1 ( 4 − 35 ) \text{det}(M) = -1(-4) - (-1)(3) + 1(4 - 35) det ( M ) = − 1 ( − 4 ) − ( − 1 ) ( 3 ) + 1 ( 4 − 35 )
= 4 + 3 + 1(-31) = 4 + 3 + 1 ( − 31 ) = 4 + 3 + 1(-31) = 4 + 3 + 1 ( − 31 )
= 4 + 3 - 31 = -24 = 4 + 3 − 31 = − 24 = 4 + 3 - 31 = -24 = 4 + 3 − 31 = − 24
Calcola l'area:
A = \frac{1}{2} \left| -24 \right| = \frac{24}{2} = 12 A = 1 2 ∣ − 24 ∣ = 24 2 = 12 A = \frac{1}{2} \left| -24 \right| = \frac{24}{2} = 12 A = 2 1 ​ ∣ − 24 ∣ = 2 24 ​ = 12
Quindi, l'area del triangolo con vertici A(-1, -1) A ( − 1 , − 1 ) A(-1, -1) A ( − 1 , − 1 ) , B(-4, -5) B ( − 4 , − 5 ) B(-4, -5) B ( − 4 , − 5 ) , e C(-7, -1) C ( − 7 , − 1 ) C(-7, -1) C ( − 7 , − 1 ) è 12 unità quadrate.
Esercizio 3: Area di un Triangolo con Vertici in Posizioni Diverse
Problema : Calcola l'area del triangolo con vertici A(2, 3) A ( 2 , 3 ) A(2, 3) A ( 2 , 3 ) , B(5, 11) B ( 5 , 11 ) B(5, 11) B ( 5 , 11 ) , e C(12, 8) C ( 12 , 8 ) C(12, 8) C ( 12 , 8 ) .
Soluzione :
Scrivi i vertici:
A(2, 3) A ( 2 , 3 ) A(2, 3) A ( 2 , 3 )
B(5, 11) B ( 5 , 11 ) B(5, 11) B ( 5 , 11 )
C(12, 8) C ( 12 , 8 ) C(12, 8) C ( 12 , 8 )
Costruisci la matrice:
M = \begin{bmatrix}
2 & 3 & 1 \\
5 & 11 & 1 \\
12 & 8 & 1
\end{bmatrix} M = [ 2 3 1 5 11 1 12 8 1 ] M = \begin{bmatrix}
2 & 3 & 1 \\
5 & 11 & 1 \\
12 & 8 & 1
\end{bmatrix} M = ​ 2 5 12 ​ 3 11 8 ​ 1 1 1 ​ ​
Calcola il determinante:
\text{det}(M) = 2(11 - 8) - 3(5 - 12) + 1(5 \cdot 8 - 11 \cdot 12) det ( M ) = 2 ( 11 − 8 ) − 3 ( 5 − 12 ) + 1 ( 5 ⋅ 8 − 11 ⋅ 12 ) \text{det}(M) = 2(11 - 8) - 3(5 - 12) + 1(5 \cdot 8 - 11 \cdot 12) det ( M ) = 2 ( 11 − 8 ) − 3 ( 5 − 12 ) + 1 ( 5 ⋅ 8 − 11 ⋅ 12 )
= 2(3) - 3(-7) + 1(40 - 132) = 2 ( 3 ) − 3 ( − 7 ) + 1 ( 40 − 132 ) = 2(3) - 3(-7) + 1(40 - 132) = 2 ( 3 ) − 3 ( − 7 ) + 1 ( 40 − 132 )
= 6 + 21 + 1(-92) = 6 + 21 + 1 ( − 92 ) = 6 + 21 + 1(-92) = 6 + 21 + 1 ( − 92 )
= 6 + 21 - 92 = -65 = 6 + 21 − 92 = − 65 = 6 + 21 - 92 = -65 = 6 + 21 − 92 = − 65
Calcola l'area:
A = \frac{1}{2} \left| -65 \right| = \frac{65}{2} = 32.5 A = 1 2 ∣ − 65 ∣ = 65 2 = 32.5 A = \frac{1}{2} \left| -65 \right| = \frac{65}{2} = 32.5 A = 2 1 ​ ∣ − 65 ∣ = 2 65 ​ = 32.5
Quindi, l'area del triangolo con vertici A(2, 3), B(5, 11), e C(12, 8) è 32.5 unità quadrate.
English version
Exercises on the Area of ​​a Triangle with Matrices
Area of ​​a Triangle with Matrices
Introduction
The area of ​​a triangle can be calculated using the coordinates of its vertices. If the vertices of the triangle are given by the points A(x_1, y_1) A ( x 1 , y 1 ) A(x_1, y_1) A ( x 1 ​ , y 1 ​ ) , B(x_2, y_2) B ( x 2 , y 2 ) B(x_2, y_2) B ( x 2 ​ , y 2 ​ ) , and C(x_3, y_3) C ( x 3 , y 3 ) C(x_3, y_3) C ( x 3 ​ , y 3 ​ ) , the area A of the triangle can be calculated with the following formula:
A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| A = 1 2 ∣ x 1 ( y 2 − y 3 ) + x 2 ( y 3 − y 1 ) + x 3 ( y 1 − y 2 ) ∣ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| A = 2 1 ​ ∣ x 1 ​ ( y 2 ​ − y 3 ​ ) + x 2 ​ ( y 3 ​ − y 1 ​ ) + x 3 ​ ( y 1 ​ − y 2 ​ ) ∣
Using Matrices
We can also use matrices to calculate the area of ​​the triangle. The area can be expressed as the determinant of a 3x3 matrix:
A = \frac{1}{2} \left| \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \right| A = 1 2 ∣ ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ ∣ A = \frac{1}{2} \left| \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \right| A = 2 1 ​ ​ ​ x 1 ​ x 2 ​ x 3 ​ ​ y 1 ​ y 2 ​ y 3 ​ ​ 1 1 1 ​ ​ ​
Determinant of the Matrix
The determinant of the matrix is ​​calculated as follows:
\begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{vmatrix} = x_1(y_2 - y_3) - y_1(x_2 - x_3) + 1(x_2y_3 - x_3y_2) ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ = x 1 ( y 2 − y 3 ) − y 1 ( x 2 − x 3 ) + 1 ( x 2 y 3 − x 3 y 2 ) \begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{vmatrix} = x_1(y_2 - y_3) - y_1(x_2 - x_3) + 1(x_2y_3 - x_3y_2) ​ x 1 ​ x 2 ​ x 3 ​ ​ y 1 ​ y 2 ​ y 3 ​ ​ 1 1 1 ​ ​ = x 1 ​ ( y 2 ​ − y 3 ​ ) − y 1 ​ ( x 2 ​ − x 3 ​ ) + 1 ( x 2 ​ y 3 ​ − x 3 ​ y 2 ​ )
Exercises
Exercise 1: Calculating the Area of ​​a Triangle
Problem : Calculate the area of ​​the triangle with vertices A(1, 2) A ( 1 , 2 ) A(1, 2) A ( 1 , 2 ) , B(4, 5) B ( 4 , 5 ) B(4, 5) B ( 4 , 5 ) , and C(7, 2) C ( 7 , 2 ) C(7, 2) C ( 7 , 2 ) .
Solution :
Write the vertices:
A(1, 2) A ( 1 , 2 ) A(1, 2) A ( 1 , 2 )
B(4, 5) B ( 4 , 5 ) B(4, 5) B ( 4 , 5 )
C(7, 2) C ( 7 , 2 ) C(7, 2) C ( 7 , 2 )
Build the matrix:
M = \begin{bmatrix}
1 & 2 & 1 \\
4 & 5 & 1 \\
7 & 2 & 1
\end{bmatrix} M = [ 1 2 1 4 5 1 7 2 1 ] M = \begin{bmatrix}
1 & 2 & 1 \\
4 & 5 & 1 \\
7 & 2 & 1
\end{bmatrix} M = ​ 1 4 7 ​ 2 5 2 ​ 1 1 1 ​ ​
Calculate the determinant:
\text{det}(M) = 1(5 - 2) - 2(4 - 7) + 1(4 \cdot 2 - 5 \cdot 7) det ( M ) = 1 ( 5 − 2 ) − 2 ( 4 − 7 ) + 1 ( 4 ⋅ 2 − 5 ⋅ 7 ) \text{det}(M) = 1(5 - 2) - 2(4 - 7) + 1(4 \cdot 2 - 5 \cdot 7) det ( M ) = 1 ( 5 − 2 ) − 2 ( 4 − 7 ) + 1 ( 4 ⋅ 2 − 5 ⋅ 7 )
= 1(3) - 2(-3) + 1(8 - 35) = 1 ( 3 ) − 2 ( − 3 ) + 1 ( 8 − 35 ) = 1(3) - 2(-3) + 1(8 - 35) = 1 ( 3 ) − 2 ( − 3 ) + 1 ( 8 − 35 )
= 3 + 6 - 27 = -18 = 3 + 6 − 27 = − 18 = 3 + 6 - 27 = -18 = 3 + 6 − 27 = − 18
Calculate the area:
A = \frac{1}{2} \left| -18 \right| = \frac{18}{2} = 9 A = 1 2 ∣ − 18 ∣ = 18 2 = 9 A = \frac{1}{2} \left| -18 \right| = \frac{18}{2} = 9 A = 2 1 ​ ∣ − 18 ∣ = 2 18 ​ = 9
Exercise 2: Area of ​​a Triangle with Negative Vertices
Problem : Calculate the area of ​​the triangle with vertices A(-1, -1) A ( − 1 , − 1 ) A(-1, -1) A ( − 1 , − 1 ) , B(-4, -5) B ( − 4 , − 5 ) B(-4, -5) B ( − 4 , − 5 ) , and C(-7, -1) C ( − 7 , − 1 ) C(-7, -1) C ( − 7 , − 1 ) .
Solution :
Write the vertices:
A(-1, -1) A ( − 1 , − 1 ) A(-1, -1) A ( − 1 , − 1 )
B(-4, -5) B ( − 4 , − 5 ) B(-4, -5) B ( − 4 , − 5 )
C(-7, -1) C ( − 7 , − 1 ) C(-7, -1) C ( − 7 , − 1 )
Build the matrix:
M = \begin{bmatrix}
-1 & -1 & 1 \\
-4 & -5 & 1 \\
-7 & -1 & 1
\end{bmatrix} M = [ − 1 − 1 1 − 4 − 5 1 − 7 − 1 1 ] M = \begin{bmatrix}
-1 & -1 & 1 \\
-4 & -5 & 1 \\
-7 & -1 & 1
\end{bmatrix} M = ​ − 1 − 4 − 7 ​ − 1 − 5 − 1 ​ 1 1 1 ​ ​
Calculate the determinant:
\text{det}(M) = -1(-4) - (-1)(3) + 1(4 - 35) det ( M ) = − 1 ( − 4 ) − ( − 1 ) ( 3 ) + 1 ( 4 − 35 ) \text{det}(M) = -1(-4) - (-1)(3) + 1(4 - 35) det ( M ) = − 1 ( − 4 ) − ( − 1 ) ( 3 ) + 1 ( 4 − 35 )
= 4 + 3 + 1(-31) = 4 + 3 + 1 ( − 31 ) = 4 + 3 + 1(-31) = 4 + 3 + 1 ( − 31 )
= 4 + 3 - 31 = -24 = 4 + 3 − 31 = − 24 = 4 + 3 - 31 = -24 = 4 + 3 − 31 = − 24
Calculate the area:
A = \frac{1}{2} \left| -24 \right| = \frac{24}{2} = 12 A = 1 2 ∣ − 24 ∣ = 24 2 = 12 A = \frac{1}{2} \left| -24 \right| = \frac{24}{2} = 12 A = 2 1 ​ ∣ − 24 ∣ = 2 24 ​ = 12
So, the area of ​​the triangle with vertices A(-1, -1) A ( − 1 , − 1 ) A(-1, -1) A ( − 1 , − 1 ) , B(-4, -5) B ( − 4 , − 5 ) B(-4, -5) B ( − 4 , − 5 ) , and C(-7, -1) C ( − 7 , − 1 ) C(-7, -1) C ( − 7 , − 1 ) is 12 square units.
Exercise 3: Area of ​​a Triangle with Vertices in Different Positions
Problem : Find the area of ​​the triangle with vertices A(2, 3) A ( 2 , 3 ) A(2, 3) A ( 2 , 3 ) , B(5, 11) B ( 5 , 11 ) B(5, 11) B ( 5 , 11 ) , and C(12, 8) C ( 12 , 8 ) C(12, 8) C ( 12 , 8 ) .
Solution :
Write the vertices:
A(2, 3) A ( 2 , 3 ) A(2, 3) A ( 2 , 3 )
B(5, 11) B ( 5 , 11 ) B(5, 11) B ( 5 , 11 )
C(12, 8) C ( 12 , 8 ) C(12, 8) C ( 12 , 8 )
Build the matrix:
M = \begin{bmatrix}
2 & 3 & 1 \\
5 & 11 & 1 \\
12 & 8 & 1
\end{bmatrix} M = [ 2 3 1 5 11 1 12 8 1 ] M = \begin{bmatrix}
2 & 3 & 1 \\
5 & 11 & 1 \\
12 & 8 & 1
\end{bmatrix} M = ​ 2 5 12 ​ 3 11 8 ​ 1 1 1 ​ ​
Calculate the determinant:
\text{det}(M) = 2(11 - 8) - 3(5 - 12) + 1(5 \cdot 8 - 11 \cdot 12) det ( M ) = 2 ( 11 − 8 ) − 3 ( 5 − 12 ) + 1 ( 5 ⋅ 8 − 11 ⋅ 12 ) \text{det}(M) = 2(11 - 8) - 3(5 - 12) + 1(5 \cdot 8 - 11 \cdot 12) det ( M ) = 2 ( 11 − 8 ) − 3 ( 5 − 12 ) + 1 ( 5 ⋅ 8 − 11 ⋅ 12 )
= 2(3) - 3(-7) + 1(40 - 132) = 2 ( 3 ) − 3 ( − 7 ) + 1 ( 40 − 132 ) = 2(3) - 3(-7) + 1(40 - 132) = 2 ( 3 ) − 3 ( − 7 ) + 1 ( 40 − 132 )
= 6 + 21 + 1(-92) = 6 + 21 + 1 ( − 92 ) = 6 + 21 + 1(-92) = 6 + 21 + 1 ( − 92 )
= 6 + 21 - 92 = -65 = 6 + 21 − 92 = − 65 = 6 + 21 - 92 = -65 = 6 + 21 − 92 = − 65
Calculate the area:
A = \frac{1}{2} \left| -65 \right| = \frac{65}{2} = 32.5 A = 1 2 ∣ − 65 ∣ = 65 2 = 32.5 A = \frac{1}{2} \left| -65 \right| = \frac{65}{2} = 32.5 A = 2 1 ​ ∣ − 65 ∣ = 2 65 ​ = 32.5
So, the area of ​​the triangle with vertices A(2, 3), B(5, 11), and C(12, 8) is 32.5 square units.
Commenti
Posta un commento