Esercizi sulla Legge di Guy-Lussac

Esercizi sulla Legge di Guy-Lussac Esercizi sulla Legge di Guy-Lussac
Esercizi sulla Legge di Guy-Lussac

Versione italiana

Esercizi sulla Legge di Guy-Lussac

La legge di Guy-Lussac afferma che, a volume costante, la pressione di un gas ideale è direttamente proporzionale alla sua temperatura assoluta. Questa relazione può essere espressa matematicamente come:

\frac{P_1}{T_1} = \frac{P_2}{T_2}
P1T1=P2T2\frac{P_1}{T_1} = \frac{P_2}{T_2}

dove:

  • P è la pressione del gas (in atm, Pa, o altre unità),
  • T è la temperatura assoluta (in Kelvin),
  • i pedici 1 e 2 indicano due stati differenti del gas.

Concetti Chiave

  • Pressione (P): Forza esercitata per unità di superficie.
  • Temperatura (T ): Misura dell'energia cinetica media delle particelle in un gas, espressa in Kelvin.
  • Gas Ideale: Un modello teorico di gas che segue le leggi dei gas perfetti.

Esercizi

Esercizio 1

Un gas ha una pressione di 2 \, \text{atm}2atm2 \, \text{atm} a 300 \, \text{K}300K300 \, \text{K}. Quale sarà la pressione del gas se la temperatura aumenta a 600 \, \text{K}600K600 \, \text{K}?

Soluzione

Utilizziamo la legge di Guy-Lussac:

\frac{P_1}{T_1} = \frac{P_2}{T_2}
P1T1=P2T2\frac{P_1}{T_1} = \frac{P_2}{T_2}

Sostituendo i valori:

\frac{2 \, \text{atm}}{300 \, \text{K}} = \frac{P_2}{600 \, \text{K}}
2atm300K=P2600K\frac{2 \, \text{atm}}{300 \, \text{K}} = \frac{P_2}{600 \, \text{K}}

Risolvendo per P_2P2P_2:

P_2 = 2 \, \text{atm} \cdot \frac{600 \, \text{K}}{300 \, \text{K}} = 4 \, \text{atm}
P2=2atm600K300K=4atmP_2 = 2 \, \text{atm} \cdot \frac{600 \, \text{K}}{300 \, \text{K}} = 4 \, \text{atm}

Esercizio 2

Se un gas ha una pressione di 1.5 \, \text{atm}1.5atm1.5 \, \text{atm} a 250 \, \text{K}250K250 \, \text{K}, qual è la temperatura a cui la pressione sarà 3.0 \, \text{atm}3.0atm3.0 \, \text{atm}?

Soluzione

Utilizziamo di nuovo la legge di Guy-Lussac:

\frac{P_1}{T_1} = \frac{P_2}{T_2}
P1T1=P2T2\frac{P_1}{T_1} = \frac{P_2}{T_2}

Sostituendo i valori:

\frac{1.5 \, \text{atm}}{250 \, \text{K}} = \frac{3.0 \, \text{atm}}{T_2}
1.5atm250K=3.0atmT2\frac{1.5 \, \text{atm}}{250 \, \text{K}} = \frac{3.0 \, \text{atm}}{T_2}

Risolvendo per T_2T2T_2:

T_2 = 3.0 \, \text{atm} \cdot \frac{250 \, \text{K}}{1.5 \, \text{atm}} = 500 \, \text{K}
T2=3.0atm250K1.5atm=500KT_2 = 3.0 \, \text{atm} \cdot \frac{250 \, \text{K}}{1.5 \, \text{atm}} = 500 \, \text{K}

English version

Guy-Lussac's Law Exercises

Guy-Lussac's law states that, at constant volume, the pressure of an ideal gas is directly proportional to its absolute temperature. This relationship can be expressed mathematically as:

\frac{P_1}{T_1} = \frac{P_2}{T_2}
P1T1=P2T2\frac{P_1}{T_1} = \frac{P_2}{T_2}

where:

  • P is the pressure of the gas (in atm, Pa, or other units),
  • T is the absolute temperature (in Kelvin),
  • the subscripts 1 and 2 indicate two different states of the gas.

Key Concepts

  • Pressure (P): Force exerted per unit area.
  • Temperature (T ): A measure of the average kinetic energy of particles in a gas, expressed in Kelvin.
  • Ideal Gas: A theoretical model of a gas that follows the ideal gas laws.

Exercises

Exercise 1

A gas has a pressure of 2 \, \text{atm}2atm2 \, \text{atm} at 300 \, \text{K}300K300 \, \text{K}. What will be the pressure of the gas if the temperature is increased to 600 \, \text{K}600K600 \, \text{K}?

Solution

We use Guy-Lussac's law:

\frac{P_1}{T_1} = \frac{P_2}{T_2}
P1T1=P2T2\frac{P_1}{T_1} = \frac{P_2}{T_2}

Substituting the values:

\frac{2 \, \text{atm}}{300 \, \text{K}} = \frac{P_2}{600 \, \text{K}}
2atm300K=P2600K\frac{2 \, \text{atm}}{300 \, \text{K}} = \frac{P_2}{600 \, \text{K}}

Solving for P_2P2P_2:

P_2 = 2 \, \text{atm} \cdot \frac{600 \, \text{K}}{300 \, \text{K}} = 4 \, \text{atm}
P2=2atm600K300K=4atmP_2 = 2 \, \text{atm} \cdot \frac{600 \, \text{K}}{300 \, \text{K}} = 4 \, \text{atm}

Exercise 2

If a gas has a pressure of 1.5 \, \text{atm}1.5atm1.5 \, \text{atm} at 250 \, \text{K}250K250 \, \text{K}, what is the temperature at which the pressure will be 3.0 \, \text{atm}3.0atm3.0 \, \text{atm}?

Solution

Let's use Guy-Lussac's law again:

\frac{P_1}{T_1} = \frac{P_2}{T_2}
P1T1=P2T2\frac{P_1}{T_1} = \frac{P_2}{T_2}

Substituting the values:

\frac{1.5 \, \text{atm}}{250 \, \text{K}} = \frac{3.0 \, \text{atm}}{T_2}
1.5atm250K=3.0atmT2\frac{1.5 \, \text{atm}}{250 \, \text{K}} = \frac{3.0 \, \text{atm}}{T_2}

Solving for T_2T2T_2:

T_2 = 3.0 \, \text{atm} \cdot \frac{250 \, \text{K}}{1.5 \, \text{atm}} = 500 \, \text{K}
T2=3.0atm250K1.5atm=500KT_2 = 3.0 \, \text{atm} \cdot \frac{250 \, \text{K}}{1.5 \, \text{atm}} = 500 \, \text{K}

Commenti