Il mio Canale YouTube

Esercizi sulla classificazione statica

Esercizi sulla classificazione statica Esercizi sulla classificazione statica
Esercizi sulla classificazione statica

Versione statica

Esercizi sulla classificazione statica

La classificazione statica con l'uso delle matrici è un approccio utile per analizzare sistemi di forze e momenti in equilibrio.

Concetti Fondamentali

  1. Sistemi di Equazioni: In un problema di equilibrio statico, possiamo avere più forze e momenti. Le equazioni di equilibrio possono essere scritte in forma matriciale.

  2. Matrici di Forza: Le forze possono essere rappresentate in una matrice colonna. Ad esempio, per un sistema bidimensionale, possiamo avere:

    \begin{bmatrix}
    F_x \\
    F_y \\
    M
    \end{bmatrix}
    [FxFyM]\begin{bmatrix} F_x \\ F_y \\ M \end{bmatrix}

    dove F_xFxF_x e F_yFyF_y sono le forze nelle direzioni x e y, e M è il momento.

  3. Equazioni di Equilibrio: Le equazioni di equilibrio possono essere scritte come:

    \begin{bmatrix}
    1 & 0 & 0 \\
    0 & 1 & 0 \\
    0 & 0 & 1
    \end{bmatrix}
    \begin{bmatrix}
    R_A \\
    R_B \\
    R_C
    \end{bmatrix}
    =
    \begin{bmatrix}
    F_{x,\text{tot}} \\
    F_{y,\text{tot}} \\
    M_{\text{tot}}
    \end{bmatrix}
    [100010001][RARBRC]=[Fx,totFy,totMtot]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \\ R_C \end{bmatrix} = \begin{bmatrix} F_{x,\text{tot}} \\ F_{y,\text{tot}} \\ M_{\text{tot}} \end{bmatrix}

Esercizi Esempio

Esercizio 1:

Un trave orizzontale di lunghezza 4 \, \text{m}4m4 \, \text{m} è sostenuto da due supporti A e B. Una forza di 200 \, \text{N}200N200 \, \text{N} è applicata al centro del trave. Calcola le reazioni nei supporti usando le matrici.

Soluzione:

  • Definiamo le reazioni nei supporti come R_ARAR_A e R_BRBR_B.
  • Le equazioni di equilibrio sono:
    R_A + R_B = 200 \quad (1)
    RA+RB=200(1)R_A + R_B = 200 \quad (1)
    R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2)
    RB42002=0(2)R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2)

Scriviamo queste equazioni in forma matriciale:

\begin{bmatrix}
1 & 1 \\
0 & 4
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
200 \\
400
\end{bmatrix}
[1104][RARB]=[200400]\begin{bmatrix} 1 & 1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 200 \\ 400 \end{bmatrix}

Risolvendo il sistema di equazioni:

  • Dalla (1): R_B = 200 - R_ARB=200RAR_B = 200 - R_A
  • Sostituendo nella (2):
    0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N}
    0RA+4(200RA)=400    8004RA=400    4RA=400    RA=100N0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N}
  • Sostituendo R_ARAR_A nella (1):
    100 + R_B = 200 \implies R_B = 100 \, \text{N}
    100+RB=200    RB=100N100 + R_B = 200 \implies R_B = 100 \, \text{N}

Le reazioni nei supporti sono R_A = 100 \, \text{N}RA=100NR_A = 100 \, \text{N} e R_B = 100 \, \text{N}RB=100NR_B = 100 \, \text{N}.

Esercizio 2

Un trave di 6 \, \text{m}6m6 \, \text{m} è appeso orizzontalmente e sostenuto da un supporto centrale. Se una forza di 300 \, \text{N}300N300 \, \text{N} è applicata a 2 \, \text{m}2m2 \, \text{m} da un'estremità, calcola le reazioni nei supporti usando le matrici.

Soluzione:

  • Definiamo le reazioni nei supporti come R_ARAR_A e R_BRBR_B.
  • Le equazioni di equilibrio sono:
    1. R_A + R_B = 300RA+RB=300R_A + R_B = 300 (Equazione 1)
    2. R_B \cdot 6 - 300 \cdot 2 = 0RB63002=0R_B \cdot 6 - 300 \cdot 2 = 0 (Equazione 2)

Possiamo riscrivere queste equazioni in forma matriciale. Le reazioni nei supporti possono essere rappresentate come una matrice colonna:

\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
[RARB]\begin{bmatrix} R_A \\ R_B \end{bmatrix}

Le equazioni possono essere scritte come:

\begin{bmatrix}
1 & 1 \\
0 & 6
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
300 \\
600
\end{bmatrix}
[1106][RARB]=[300600]\begin{bmatrix} 1 & 1 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 300 \\ 600 \end{bmatrix}

Risoluzione del Sistema di Equazioni

  1. Dalla prima equazione:

    R_A + R_B = 300 \quad (1)
    RA+RB=300(1)R_A + R_B = 300 \quad (1)
  2. Dalla seconda equazione:

    6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2)
    6RB=600    RB=100N(2)6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2)

Ora sostituiamo il valore di R_BRBR_B nell'equazione (1):

R_A + 100 = 300
RA+100=300R_A + 100 = 300

Da cui otteniamo:

R_A = 300 - 100 = 200 \, \text{N}
RA=300100=200NR_A = 300 - 100 = 200 \, \text{N}

Risultati Finali

Le reazioni nei supporti sono:

  • R_A = 200 \, \text{N}RA=200NR_A = 200 \, \text{N}
  • R_B = 100 \, \text{N}RB=100NR_B = 100 \, \text{N}

Esercizio 3: Trave con Forze Multiple

Consideriamo un trave di 5 \, \text{m}5m5 \, \text{m} sostenuto da due supporti A e B. Una forza di 400 \, \text{N}400N400 \, \text{N} è applicata a 1 \, \text{m}1m1 \, \text{m} da A e una forza di 200 \, \text{N}200N200 \, \text{N} è applicata a 4 \, \text{m}4m4 \, \text{m} da A. Calcola le reazioni nei supporti A e B usando le matrici.

Soluzione:

  1. Definiamo le reazioni nei supporti come R_ARAR_A e R_BRBR_B.
  2. Le equazioni di equilibrio sono:
    R_A + R_B = 400 + 200 \quad (1)
    RA+RB=400+200(1)R_A + R_B = 400 + 200 \quad (1)
    R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2)
    RB540012004=0(2)R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2)

Scrittura in Forma Matriciale

Possiamo scrivere queste equazioni in forma matriciale:

\begin{bmatrix}
1 & 1 \\
0 & 5
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
600 \\
800
\end{bmatrix}
[1105][RARB]=[600800]\begin{bmatrix} 1 & 1 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 600 \\ 800 \end{bmatrix}

Risoluzione del Sistema di Equazioni

  1. Dalla prima equazione:

    R_A + R_B = 600 \quad (1)
    RA+RB=600(1)R_A + R_B = 600 \quad (1)
  2. Dalla seconda equazione:

    5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2)
    5RB=800    RB=160N(2)5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2)

Ora sostituiamo il valore di R_BRBR_B nell'equazione (1):

R_A + 160 = 600
RA+160=600R_A + 160 = 600

Da cui otteniamo:

R_A = 600 - 160 = 440 \, \text{N}
RA=600160=440NR_A = 600 - 160 = 440 \, \text{N}

Risultati Finali

Le reazioni nei supporti sono:

  • R_A = 440 \, \text{N}RA=440NR_A = 440 \, \text{N}
  • R_B = 160 \, \text{N}RB=160NR_B = 160 \, \text{N}

English version

Static Classification Exercises

Static classification using matrices is a useful approach to analyze systems of forces and moments in equilibrium.

Fundamental Concepts

  1. Systems of Equations: In a static equilibrium problem, we can have multiple forces and moments. Equilibrium equations can be written in matrix form.

  2. Force Matrices: Forces can be represented in a column matrix. For example, for a two-dimensional system, we can have:

\begin{bmatrix}
F_x \\
F_y \\
M
\end{bmatrix}
[FxFyM]\begin{bmatrix} F_x \\ F_y \\ M \end{bmatrix}

where F_xFxF_x and F_yFyF_y are the forces in the x and y directions, and M is the moment.

  1. Equilibrium Equations: Equilibrium equations can be written as:
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B \\
R_C
\end{bmatrix}
=
\begin{bmatrix}
F_{x,\text{tot}} \\
F_{y,\text{tot}} \\
M_{\text{tot}}
\end{bmatrix}
[100010001][RARBRC]=[Fx,totFy,totMtot]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \\ R_C \end{bmatrix} = \begin{bmatrix} F_{x,\text{tot}} \\ F_{y,\text{tot}} \\ M_{\text{tot}} \end{bmatrix}

Exercises Example

Exercise 1:

A horizontal beam of length 4 \, \text{m}4m4 \, \text{m} is supported by two supports A and B. A force of 200 \, \text{N}200N200 \, \text{N} is applied at the center of the beam. Calculate the reactions in the supports using matrices.

Solution:

  • We define the reactions in the supports as R_ARAR_A and R_BRBR_B.
  • The equilibrium equations are:
R_A + R_B = 200 \quad (1)
RA+RB=200(1)R_A + R_B = 200 \quad (1)
R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2)
RB42002=0(2)R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2)

Let's write these equations in matrix form:

\begin{bmatrix}
1 & 1 \\
0 & 4
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
200 \\
400
\end{bmatrix}
[1104][RARB]=[200400]\begin{bmatrix} 1 & 1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 200 \\ 400 \end{bmatrix}

Solving the system of equations:

  • From (1): R_B = 200 - R_ARB=200RAR_B = 200 - R_A
  • Substituting in (2):
0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N}
0RA+4(200RA)=400    8004RA=400    4RA=400    RA=100N0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N}
  • Substituting R_ARAR_A into (1):
100 + R_B = 200 \implies R_B = 100 \, \text{N}
100+RB=200    RB=100N100 + R_B = 200 \implies R_B = 100 \, \text{N}

The reactions at the supports are R_A = 100 \, \text{N}RA=100NR_A = 100 \, \text{N} and R_B = 100 \, \text{N}RB=100NR_B = 100 \, \text{N}.

Exercise 2

A beam of 6 \, \text{m}6m6 \, \text{m} is hung horizontally and supported by a central support. If a force of 300 \, \text{N}300N300 \, \text{N} is applied at 2 \, \text{m}2m2 \, \text{m} from one end, calculate the reactions at the supports using matrices.

Solution:

  • We define the reactions in the supports as R_ARAR_A and R_BRBR_B.
  • The equilibrium equations are:
  1. R_A + R_B = 300RA+RB=300R_A + R_B = 300 (Equation 1)
  2. R_B \cdot 6 - 300 \cdot 2 = 0RB63002=0R_B \cdot 6 - 300 \cdot 2 = 0 (Equation 2)

We can rewrite these equations in matrix form. The reactions in the supports can be represented as a column matrix:

\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
[RARB]\begin{bmatrix} R_A \\ R_B \end{bmatrix}

The equations can be written as:

\begin{bmatrix}
1 & 1 \\
0 & 6
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
300 \\
600
\end{bmatrix}
[1106][RARB]=[300600]\begin{bmatrix} 1 & 1 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 300 \\ 600 \end{bmatrix}

Solving the System of Equations

  1. From the first equation:
R_A + R_B = 300 \quad (1)
RA+RB=300(1)R_A + R_B = 300 \quad (1)
  1. From the second equation:
6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2)
6RB=600    RB=100N(2)6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2)

Now we substitute the value of R_BRBR_B in equation (1):

R_A + 100 = 300
RA+100=300R_A + 100 = 300

From which we obtain:

R_A = 300 - 100 = 200 \, \text{N}
RA=300100=200NR_A = 300 - 100 = 200 \, \text{N}

Final Results

The reactions in the supports are:

  • R_A = 200 \, \text{N}RA=200NR_A = 200 \, \text{N}
  • R_B = 100 \, \text{N}RB=100NR_B = 100 \, \text{N}

Exercise 3: Beam with Multiple Forces

Let's consider a beam of 5 \, \text{m}5m5 \, \text{m} supported by two supports A and B. A force of 400 \, \text{N}400N400 \, \text{N} is applied to 1 \, \text{m}1m1 \, \text{m} from A and a force of 200 \, \text{N}200N200 \, \text{N} is applied to 4 \, \text{m}4m4 \, \text{m} from A. Calculate the reactions in the supports A and B using matrices.

Solution:

  1. We define the reactions in the supports as R_ARAR_A and R_BRBR_B.
  2. The equilibrium equations are:
R_A + R_B = 400 + 200 \quad (1)
RA+RB=400+200(1)R_A + R_B = 400 + 200 \quad (1)
R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2)
RB540012004=0(2)R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2)

Writing in Matrix Form

We can write these equations in matrix form:

\begin{bmatrix}
1 & 1 \\
0 & 5
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
600 \\
800
\end{bmatrix}
[1105][RARB]=[600800]\begin{bmatrix} 1 & 1 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 600 \\ 800 \end{bmatrix}

Solving the System of Equations

  1. From the first equation:
R_A + R_B = 600 \quad (1)
RA+RB=600(1)R_A + R_B = 600 \quad (1)
  1. From the second equation:
5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2)
5RB=800    RB=160N(2)5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2)

Now we substitute the value of R_BRBR_B in equation (1):

R_A + 160 = 600
RA+160=600R_A + 160 = 600

From which we obtain:

R_A = 600 - 160 = 440 \, \text{N}
RA=600160=440NR_A = 600 - 160 = 440 \, \text{N}

Final Results

The reactions in the supports are:

  • R_A = 440 \, \text{N}RA=440NR_A = 440 \, \text{N}
  • R_B = 160 \, \text{N}RB=160NR_B = 160 \, \text{N}

Commenti