Esercizi sulla classificazione statica

Esercizi sulla classificazione statica Esercizi sulla classificazione statica
Esercizi sulla classificazione statica

Versione statica

Esercizi sulla classificazione statica

La classificazione statica con l'uso delle matrici è un approccio utile per analizzare sistemi di forze e momenti in equilibrio.

Concetti Fondamentali

  1. Sistemi di Equazioni: In un problema di equilibrio statico, possiamo avere più forze e momenti. Le equazioni di equilibrio possono essere scritte in forma matriciale.

  2. Matrici di Forza: Le forze possono essere rappresentate in una matrice colonna. Ad esempio, per un sistema bidimensionale, possiamo avere:

    \begin{bmatrix}
    F_x \\
    F_y \\
    M
    \end{bmatrix}
    [FxFyM]\begin{bmatrix} F_x \\ F_y \\ M \end{bmatrix}

    dove F_xFxF_x e F_yFyF_y sono le forze nelle direzioni x e y, e M è il momento.

  3. Equazioni di Equilibrio: Le equazioni di equilibrio possono essere scritte come:

    \begin{bmatrix}
    1 & 0 & 0 \\
    0 & 1 & 0 \\
    0 & 0 & 1
    \end{bmatrix}
    \begin{bmatrix}
    R_A \\
    R_B \\
    R_C
    \end{bmatrix}
    =
    \begin{bmatrix}
    F_{x,\text{tot}} \\
    F_{y,\text{tot}} \\
    M_{\text{tot}}
    \end{bmatrix}
    [100010001][RARBRC]=[Fx,totFy,totMtot]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \\ R_C \end{bmatrix} = \begin{bmatrix} F_{x,\text{tot}} \\ F_{y,\text{tot}} \\ M_{\text{tot}} \end{bmatrix}

Esercizi Esempio

Esercizio 1:

Un trave orizzontale di lunghezza 4 \, \text{m}4m4 \, \text{m} è sostenuto da due supporti A e B. Una forza di 200 \, \text{N}200N200 \, \text{N} è applicata al centro del trave. Calcola le reazioni nei supporti usando le matrici.

Soluzione:

  • Definiamo le reazioni nei supporti come R_ARAR_A e R_BRBR_B.
  • Le equazioni di equilibrio sono:
    R_A + R_B = 200 \quad (1)
    RA+RB=200(1)R_A + R_B = 200 \quad (1)
    R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2)
    RB42002=0(2)R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2)

Scriviamo queste equazioni in forma matriciale:

\begin{bmatrix}
1 & 1 \\
0 & 4
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
200 \\
400
\end{bmatrix}
[1104][RARB]=[200400]\begin{bmatrix} 1 & 1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 200 \\ 400 \end{bmatrix}

Risolvendo il sistema di equazioni:

  • Dalla (1): R_B = 200 - R_ARB=200RAR_B = 200 - R_A
  • Sostituendo nella (2):
    0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N}
    0RA+4(200RA)=400    8004RA=400    4RA=400    RA=100N0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N}
  • Sostituendo R_ARAR_A nella (1):
    100 + R_B = 200 \implies R_B = 100 \, \text{N}
    100+RB=200    RB=100N100 + R_B = 200 \implies R_B = 100 \, \text{N}

Le reazioni nei supporti sono R_A = 100 \, \text{N}RA=100NR_A = 100 \, \text{N} e R_B = 100 \, \text{N}RB=100NR_B = 100 \, \text{N}.

Esercizio 2

Un trave di 6 \, \text{m}6m6 \, \text{m} è appeso orizzontalmente e sostenuto da un supporto centrale. Se una forza di 300 \, \text{N}300N300 \, \text{N} è applicata a 2 \, \text{m}2m2 \, \text{m} da un'estremità, calcola le reazioni nei supporti usando le matrici.

Soluzione:

  • Definiamo le reazioni nei supporti come R_ARAR_A e R_BRBR_B.
  • Le equazioni di equilibrio sono:
    1. R_A + R_B = 300RA+RB=300R_A + R_B = 300 (Equazione 1)
    2. R_B \cdot 6 - 300 \cdot 2 = 0RB63002=0R_B \cdot 6 - 300 \cdot 2 = 0 (Equazione 2)

Possiamo riscrivere queste equazioni in forma matriciale. Le reazioni nei supporti possono essere rappresentate come una matrice colonna:

\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
[RARB]\begin{bmatrix} R_A \\ R_B \end{bmatrix}

Le equazioni possono essere scritte come:

\begin{bmatrix}
1 & 1 \\
0 & 6
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
300 \\
600
\end{bmatrix}
[1106][RARB]=[300600]\begin{bmatrix} 1 & 1 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 300 \\ 600 \end{bmatrix}

Risoluzione del Sistema di Equazioni

  1. Dalla prima equazione:

    R_A + R_B = 300 \quad (1)
    RA+RB=300(1)R_A + R_B = 300 \quad (1)
  2. Dalla seconda equazione:

    6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2)
    6RB=600    RB=100N(2)6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2)

Ora sostituiamo il valore di R_BRBR_B nell'equazione (1):

R_A + 100 = 300
RA+100=300R_A + 100 = 300

Da cui otteniamo:

R_A = 300 - 100 = 200 \, \text{N}
RA=300100=200NR_A = 300 - 100 = 200 \, \text{N}

Risultati Finali

Le reazioni nei supporti sono:

  • R_A = 200 \, \text{N}RA=200NR_A = 200 \, \text{N}
  • R_B = 100 \, \text{N}RB=100NR_B = 100 \, \text{N}

Esercizio 3: Trave con Forze Multiple

Consideriamo un trave di 5 \, \text{m}5m5 \, \text{m} sostenuto da due supporti A e B. Una forza di 400 \, \text{N}400N400 \, \text{N} è applicata a 1 \, \text{m}1m1 \, \text{m} da A e una forza di 200 \, \text{N}200N200 \, \text{N} è applicata a 4 \, \text{m}4m4 \, \text{m} da A. Calcola le reazioni nei supporti A e B usando le matrici.

Soluzione:

  1. Definiamo le reazioni nei supporti come R_ARAR_A e R_BRBR_B.
  2. Le equazioni di equilibrio sono:
    R_A + R_B = 400 + 200 \quad (1)
    RA+RB=400+200(1)R_A + R_B = 400 + 200 \quad (1)
    R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2)
    RB540012004=0(2)R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2)

Scrittura in Forma Matriciale

Possiamo scrivere queste equazioni in forma matriciale:

\begin{bmatrix}
1 & 1 \\
0 & 5
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
600 \\
800
\end{bmatrix}
[1105][RARB]=[600800]\begin{bmatrix} 1 & 1 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 600 \\ 800 \end{bmatrix}

Risoluzione del Sistema di Equazioni

  1. Dalla prima equazione:

    R_A + R_B = 600 \quad (1)
    RA+RB=600(1)R_A + R_B = 600 \quad (1)
  2. Dalla seconda equazione:

    5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2)
    5RB=800    RB=160N(2)5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2)

Ora sostituiamo il valore di R_BRBR_B nell'equazione (1):

R_A + 160 = 600
RA+160=600R_A + 160 = 600

Da cui otteniamo:

R_A = 600 - 160 = 440 \, \text{N}
RA=600160=440NR_A = 600 - 160 = 440 \, \text{N}

Risultati Finali

Le reazioni nei supporti sono:

  • R_A = 440 \, \text{N}RA=440NR_A = 440 \, \text{N}
  • R_B = 160 \, \text{N}RB=160NR_B = 160 \, \text{N}

English version

Static Classification Exercises

Static classification using matrices is a useful approach to analyze systems of forces and moments in equilibrium.

Fundamental Concepts

  1. Systems of Equations: In a static equilibrium problem, we can have multiple forces and moments. Equilibrium equations can be written in matrix form.

  2. Force Matrices: Forces can be represented in a column matrix. For example, for a two-dimensional system, we can have:

\begin{bmatrix}
F_x \\
F_y \\
M
\end{bmatrix}
[FxFyM]\begin{bmatrix} F_x \\ F_y \\ M \end{bmatrix}

where F_xFxF_x and F_yFyF_y are the forces in the x and y directions, and M is the moment.

  1. Equilibrium Equations: Equilibrium equations can be written as:
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B \\
R_C
\end{bmatrix}
=
\begin{bmatrix}
F_{x,\text{tot}} \\
F_{y,\text{tot}} \\
M_{\text{tot}}
\end{bmatrix}
[100010001][RARBRC]=[Fx,totFy,totMtot]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \\ R_C \end{bmatrix} = \begin{bmatrix} F_{x,\text{tot}} \\ F_{y,\text{tot}} \\ M_{\text{tot}} \end{bmatrix}

Exercises Example

Exercise 1:

A horizontal beam of length 4 \, \text{m}4m4 \, \text{m} is supported by two supports A and B. A force of 200 \, \text{N}200N200 \, \text{N} is applied at the center of the beam. Calculate the reactions in the supports using matrices.

Solution:

  • We define the reactions in the supports as R_ARAR_A and R_BRBR_B.
  • The equilibrium equations are:
R_A + R_B = 200 \quad (1)
RA+RB=200(1)R_A + R_B = 200 \quad (1)
R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2)
RB42002=0(2)R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2)

Let's write these equations in matrix form:

\begin{bmatrix}
1 & 1 \\
0 & 4
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
200 \\
400
\end{bmatrix}
[1104][RARB]=[200400]\begin{bmatrix} 1 & 1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 200 \\ 400 \end{bmatrix}

Solving the system of equations:

  • From (1): R_B = 200 - R_ARB=200RAR_B = 200 - R_A
  • Substituting in (2):
0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N}
0RA+4(200RA)=400    8004RA=400    4RA=400    RA=100N0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N}
  • Substituting R_ARAR_A into (1):
100 + R_B = 200 \implies R_B = 100 \, \text{N}
100+RB=200    RB=100N100 + R_B = 200 \implies R_B = 100 \, \text{N}

The reactions at the supports are R_A = 100 \, \text{N}RA=100NR_A = 100 \, \text{N} and R_B = 100 \, \text{N}RB=100NR_B = 100 \, \text{N}.

Exercise 2

A beam of 6 \, \text{m}6m6 \, \text{m} is hung horizontally and supported by a central support. If a force of 300 \, \text{N}300N300 \, \text{N} is applied at 2 \, \text{m}2m2 \, \text{m} from one end, calculate the reactions at the supports using matrices.

Solution:

  • We define the reactions in the supports as R_ARAR_A and R_BRBR_B.
  • The equilibrium equations are:
  1. R_A + R_B = 300RA+RB=300R_A + R_B = 300 (Equation 1)
  2. R_B \cdot 6 - 300 \cdot 2 = 0RB63002=0R_B \cdot 6 - 300 \cdot 2 = 0 (Equation 2)

We can rewrite these equations in matrix form. The reactions in the supports can be represented as a column matrix:

\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
[RARB]\begin{bmatrix} R_A \\ R_B \end{bmatrix}

The equations can be written as:

\begin{bmatrix}
1 & 1 \\
0 & 6
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
300 \\
600
\end{bmatrix}
[1106][RARB]=[300600]\begin{bmatrix} 1 & 1 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 300 \\ 600 \end{bmatrix}

Solving the System of Equations

  1. From the first equation:
R_A + R_B = 300 \quad (1)
RA+RB=300(1)R_A + R_B = 300 \quad (1)
  1. From the second equation:
6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2)
6RB=600    RB=100N(2)6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2)

Now we substitute the value of R_BRBR_B in equation (1):

R_A + 100 = 300
RA+100=300R_A + 100 = 300

From which we obtain:

R_A = 300 - 100 = 200 \, \text{N}
RA=300100=200NR_A = 300 - 100 = 200 \, \text{N}

Final Results

The reactions in the supports are:

  • R_A = 200 \, \text{N}RA=200NR_A = 200 \, \text{N}
  • R_B = 100 \, \text{N}RB=100NR_B = 100 \, \text{N}

Exercise 3: Beam with Multiple Forces

Let's consider a beam of 5 \, \text{m}5m5 \, \text{m} supported by two supports A and B. A force of 400 \, \text{N}400N400 \, \text{N} is applied to 1 \, \text{m}1m1 \, \text{m} from A and a force of 200 \, \text{N}200N200 \, \text{N} is applied to 4 \, \text{m}4m4 \, \text{m} from A. Calculate the reactions in the supports A and B using matrices.

Solution:

  1. We define the reactions in the supports as R_ARAR_A and R_BRBR_B.
  2. The equilibrium equations are:
R_A + R_B = 400 + 200 \quad (1)
RA+RB=400+200(1)R_A + R_B = 400 + 200 \quad (1)
R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2)
RB540012004=0(2)R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2)

Writing in Matrix Form

We can write these equations in matrix form:

\begin{bmatrix}
1 & 1 \\
0 & 5
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
600 \\
800
\end{bmatrix}
[1105][RARB]=[600800]\begin{bmatrix} 1 & 1 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} R_A \\ R_B \end{bmatrix} = \begin{bmatrix} 600 \\ 800 \end{bmatrix}

Solving the System of Equations

  1. From the first equation:
R_A + R_B = 600 \quad (1)
RA+RB=600(1)R_A + R_B = 600 \quad (1)
  1. From the second equation:
5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2)
5RB=800    RB=160N(2)5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2)

Now we substitute the value of R_BRBR_B in equation (1):

R_A + 160 = 600
RA+160=600R_A + 160 = 600

From which we obtain:

R_A = 600 - 160 = 440 \, \text{N}
RA=600160=440NR_A = 600 - 160 = 440 \, \text{N}

Final Results

The reactions in the supports are:

  • R_A = 440 \, \text{N}RA=440NR_A = 440 \, \text{N}
  • R_B = 160 \, \text{N}RB=160NR_B = 160 \, \text{N}

Commenti