Versione statica
Esercizi sulla classificazione statica
La classificazione statica con l'uso delle matrici è un approccio utile per analizzare sistemi di forze e momenti in equilibrio.
Concetti Fondamentali
Sistemi di Equazioni : In un problema di equilibrio statico, possiamo avere più forze e momenti. Le equazioni di equilibrio possono essere scritte in forma matriciale.
Matrici di Forza : Le forze possono essere rappresentate in una matrice colonna. Ad esempio, per un sistema bidimensionale, possiamo avere:
\begin{bmatrix}
F_x \\
F_y \\
M
\end{bmatrix} [ F x F y M ] \begin{bmatrix}
F_x \\
F_y \\
M
\end{bmatrix} ​ F x ​ F y ​ M ​ ​
dove F_x F x F_x F x ​ e F_y F y F_y F y ​ sono le forze nelle direzioni x e y, e M è il momento.
Equazioni di Equilibrio : Le equazioni di equilibrio possono essere scritte come:
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B \\
R_C
\end{bmatrix}
=
\begin{bmatrix}
F_{x,\text{tot}} \\
F_{y,\text{tot}} \\
M_{\text{tot}}
\end{bmatrix} [ 1 0 0 0 1 0 0 0 1 ] [ R A R B R C ] = [ F x , tot F y , tot M tot ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B \\
R_C
\end{bmatrix}
=
\begin{bmatrix}
F_{x,\text{tot}} \\
F_{y,\text{tot}} \\
M_{\text{tot}}
\end{bmatrix} ​ 1 0 0 ​ 0 1 0 ​ 0 0 1 ​ ​ ​ R A ​ R B ​ R C ​ ​ ​ = ​ F x , tot ​ F y , tot ​ M tot ​ ​ ​
Esercizi Esempio
Esercizio 1 :
Un trave orizzontale di lunghezza 4 \, \text{m} 4   m 4 \, \text{m} 4 m è sostenuto da due supporti A e B. Una forza di 200 \, \text{N} 200   N 200 \, \text{N} 200 N è applicata al centro del trave. Calcola le reazioni nei supporti usando le matrici.
Soluzione :
Definiamo le reazioni nei supporti come R_A R A R_A R A ​ e R_B R B R_B R B ​ .
Le equazioni di equilibrio sono:R_A + R_B = 200 \quad (1) R A + R B = 200 ( 1 ) R_A + R_B = 200 \quad (1) R A ​ + R B ​ = 200 ( 1 )
R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2) R B ⋅ 4 − 200 ⋅ 2 = 0 ( 2 ) R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2) R B ​ ⋅ 4 − 200 ⋅ 2 = 0 ( 2 )
Scriviamo queste equazioni in forma matriciale:
\begin{bmatrix}
1 & 1 \\
0 & 4
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
200 \\
400
\end{bmatrix} [ 1 1 0 4 ] [ R A R B ] = [ 200 400 ] \begin{bmatrix}
1 & 1 \\
0 & 4
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
200 \\
400
\end{bmatrix} [ 1 0 ​ 1 4 ​ ] [ R A ​ R B ​ ​ ] = [ 200 400 ​ ]
Risolvendo il sistema di equazioni:
Dalla (1): R_B = 200 - R_A R B = 200 − R A R_B = 200 - R_A R B ​ = 200 − R A ​
Sostituendo nella (2):0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N} 0 ⋅ R A + 4 ( 200 − R A ) = 400    ⟹    800 − 4 R A = 400    ⟹    4 R A = 400    ⟹    R A = 100   N 0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N} 0 ⋅ R A ​ + 4 ( 200 − R A ​ ) = 400 ⟹ 800 − 4 R A ​ = 400 ⟹ 4 R A ​ = 400 ⟹ R A ​ = 100 N
Sostituendo R_A R A R_A R A ​ nella (1):100 + R_B = 200 \implies R_B = 100 \, \text{N} 100 + R B = 200    ⟹    R B = 100   N 100 + R_B = 200 \implies R_B = 100 \, \text{N} 100 + R B ​ = 200 ⟹ R B ​ = 100 N
Le reazioni nei supporti sono R_A = 100 \, \text{N} R A = 100   N R_A = 100 \, \text{N} R A ​ = 100 N e R_B = 100 \, \text{N} R B = 100   N R_B = 100 \, \text{N} R B ​ = 100 N .
Esercizio 2
Un trave di 6 \, \text{m} 6   m 6 \, \text{m} 6 m è appeso orizzontalmente e sostenuto da un supporto centrale. Se una forza di 300 \, \text{N} 300   N 300 \, \text{N} 300 N è applicata a 2 \, \text{m} 2   m 2 \, \text{m} 2 m da un'estremità, calcola le reazioni nei supporti usando le matrici.
Soluzione :
Definiamo le reazioni nei supporti come R_A R A R_A R A ​ e R_B R B R_B R B ​ .
Le equazioni di equilibrio sono:
R_A + R_B = 300 R A + R B = 300 R_A + R_B = 300 R A ​ + R B ​ = 300 (Equazione 1)
R_B \cdot 6 - 300 \cdot 2 = 0 R B ⋅ 6 − 300 ⋅ 2 = 0 R_B \cdot 6 - 300 \cdot 2 = 0 R B ​ ⋅ 6 − 300 ⋅ 2 = 0 (Equazione 2)
Possiamo riscrivere queste equazioni in forma matriciale. Le reazioni nei supporti possono essere rappresentate come una matrice colonna:
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix} [ R A R B ] \begin{bmatrix}
R_A \\
R_B
\end{bmatrix} [ R A ​ R B ​ ​ ]
Le equazioni possono essere scritte come:
\begin{bmatrix}
1 & 1 \\
0 & 6
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
300 \\
600
\end{bmatrix} [ 1 1 0 6 ] [ R A R B ] = [ 300 600 ] \begin{bmatrix}
1 & 1 \\
0 & 6
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
300 \\
600
\end{bmatrix} [ 1 0 ​ 1 6 ​ ] [ R A ​ R B ​ ​ ] = [ 300 600 ​ ]
Risoluzione del Sistema di Equazioni
Dalla prima equazione:
R_A + R_B = 300 \quad (1) R A + R B = 300 ( 1 ) R_A + R_B = 300 \quad (1) R A ​ + R B ​ = 300 ( 1 )
Dalla seconda equazione:
6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2) 6 R B = 600    ⟹    R B = 100   N ( 2 ) 6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2) 6 R B ​ = 600 ⟹ R B ​ = 100 N ( 2 )
Ora sostituiamo il valore di R_B R B R_B R B ​ nell'equazione (1):
R_A + 100 = 300 R A + 100 = 300 R_A + 100 = 300 R A ​ + 100 = 300
Da cui otteniamo:
R_A = 300 - 100 = 200 \, \text{N} R A = 300 − 100 = 200   N R_A = 300 - 100 = 200 \, \text{N} R A ​ = 300 − 100 = 200 N
Risultati Finali
Le reazioni nei supporti sono:
R_A = 200 \, \text{N} R A = 200   N R_A = 200 \, \text{N} R A ​ = 200 N
R_B = 100 \, \text{N} R B = 100   N R_B = 100 \, \text{N} R B ​ = 100 N
Esercizio 3: Trave con Forze Multiple
Consideriamo un trave di 5 \, \text{m} 5   m 5 \, \text{m} 5 m sostenuto da due supporti A e B. Una forza di 400 \, \text{N} 400   N 400 \, \text{N} 400 N è applicata a 1 \, \text{m} 1   m 1 \, \text{m} 1 m da A e una forza di 200 \, \text{N} 200   N 200 \, \text{N} 200 N è applicata a 4 \, \text{m} 4   m 4 \, \text{m} 4 m da A. Calcola le reazioni nei supporti A e B usando le matrici.
Soluzione :
Definiamo le reazioni nei supporti come R_A R A R_A R A ​ e R_B R B R_B R B ​ .
Le equazioni di equilibrio sono:R_A + R_B = 400 + 200 \quad (1) R A + R B = 400 + 200 ( 1 ) R_A + R_B = 400 + 200 \quad (1) R A ​ + R B ​ = 400 + 200 ( 1 )
R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2) R B ⋅ 5 − 400 ⋅ 1 − 200 ⋅ 4 = 0 ( 2 ) R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2) R B ​ ⋅ 5 − 400 ⋅ 1 − 200 ⋅ 4 = 0 ( 2 )
Possiamo scrivere queste equazioni in forma matriciale:
\begin{bmatrix}
1 & 1 \\
0 & 5
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
600 \\
800
\end{bmatrix} [ 1 1 0 5 ] [ R A R B ] = [ 600 800 ] \begin{bmatrix}
1 & 1 \\
0 & 5
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
600 \\
800
\end{bmatrix} [ 1 0 ​ 1 5 ​ ] [ R A ​ R B ​ ​ ] = [ 600 800 ​ ]
Risoluzione del Sistema di Equazioni
Dalla prima equazione:
R_A + R_B = 600 \quad (1) R A + R B = 600 ( 1 ) R_A + R_B = 600 \quad (1) R A ​ + R B ​ = 600 ( 1 )
Dalla seconda equazione:
5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2) 5 R B = 800    ⟹    R B = 160   N ( 2 ) 5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2) 5 R B ​ = 800 ⟹ R B ​ = 160 N ( 2 )
Ora sostituiamo il valore di R_B R B R_B R B ​ nell'equazione (1):
R_A + 160 = 600 R A + 160 = 600 R_A + 160 = 600 R A ​ + 160 = 600
Da cui otteniamo:
R_A = 600 - 160 = 440 \, \text{N} R A = 600 − 160 = 440   N R_A = 600 - 160 = 440 \, \text{N} R A ​ = 600 − 160 = 440 N
Risultati Finali
Le reazioni nei supporti sono:
R_A = 440 \, \text{N} R A = 440   N R_A = 440 \, \text{N} R A ​ = 440 N
R_B = 160 \, \text{N} R B = 160   N R_B = 160 \, \text{N} R B ​ = 160 N
English version
Static Classification Exercises
Static classification using matrices is a useful approach to analyze systems of forces and moments in equilibrium.
Fundamental Concepts
Systems of Equations : In a static equilibrium problem, we can have multiple forces and moments. Equilibrium equations can be written in matrix form.
Force Matrices : Forces can be represented in a column matrix. For example, for a two-dimensional system, we can have:
\begin{bmatrix}
F_x \\
F_y \\
M
\end{bmatrix} [ F x F y M ] \begin{bmatrix}
F_x \\
F_y \\
M
\end{bmatrix} ​ F x &NegativeMedNegativeMediumSpace; F y ​ M ​ ​
where F_x F x F_x F x ​ and F_y F y F_y F y ​ are the forces in the x and y directions, and M is the moment.
Equilibrium Equations : Equilibrium equations can be written as:
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B \\
R_C
\end{bmatrix}
=
\begin{bmatrix}
F_{x,\text{tot}} \\
F_{y,\text{tot}} \\
M_{\text{tot}}
\end{bmatrix} [ 1 0 0 0 1 0 0 0 1 ] [ R A R B R C ] = [ F x , tot F y , tot M tot ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B \\
R_C
\end{bmatrix}
=
\begin{bmatrix}
F_{x,\text{tot}} \\
F_{y,\text{tot}} \\
M_{\text{tot}}
\end{bmatrix} ​ 1 0 0 ​ 0 1 0 ​ 0 0 1 ​ ​ ​ R A ​ R B ​ R C ​ ​ ​ = ​ F x , tot ​ F y , tot ​ M tot ​ ​ ​
Exercises Example
Exercise 1 :
A horizontal beam of length 4 \, \text{m} 4   m 4 \, \text{m} 4 m is supported by two supports A and B. A force of 200 \, \text{N} 200   N 200 \, \text{N} 200 N is applied at the center of the beam. Calculate the reactions in the supports using matrices.
Solution :
We define the reactions in the supports as R_A R A R_A R A ​ and R_B R B R_B R B ​ .
The equilibrium equations are:
R_A + R_B = 200 \quad (1) R A + R B = 200 ( 1 ) R_A + R_B = 200 \quad (1) R A ​ + R B ​ = 200 ( 1 )
R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2) R B ⋅ 4 − 200 ⋅ 2 = 0 ( 2 ) R_B \cdot 4 - 200 \cdot 2 = 0 \quad (2) R B ​ ⋅ 4 − 200 ⋅ 2 = 0 ( 2 )
Let's write these equations in matrix form:
\begin{bmatrix}
1 & 1 \\
0 & 4
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
200 \\
400
\end{bmatrix} [ 1 1 0 4 ] [ R A R B ] = [ 200 400 ] \begin{bmatrix}
1 & 1 \\
0 & 4
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
200 \\
400
\end{bmatrix} [ 1 0 ​ 1 4 ​ ] [ R A ​ R B ​ ​ ] = [ 200 400 ​ ]
Solving the system of equations:
From (1): R_B = 200 - R_A R B = 200 − R A R_B = 200 - R_A R B ​ = 200 − R A ​
Substituting in (2):
0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N} 0 ⋅ R A + 4 ( 200 − R A ) = 400    ⟹    800 − 4 R A = 400    ⟹    4 R A = 400    ⟹    R A = 100   N 0 \cdot R_A + 4(200 - R_A) = 400 \implies 800 - 4R_A = 400 \implies 4R_A = 400 \implies R_A = 100 \, \text{N} 0 ⋅ R A ​ + 4 ( 200 − R A ​ ) = 400 ⟹ 800 − 4 R A ​ = 400 ⟹ 4 R A ​ = 400 ⟹ R A ​ = 100 N
Substituting R_A R A R_A R A ​ into (1):
100 + R_B = 200 \implies R_B = 100 \, \text{N} 100 + R B = 200    ⟹    R B = 100   N 100 + R_B = 200 \implies R_B = 100 \, \text{N} 100 + R B ​ = 200 ⟹ R B ​ = 100 N
The reactions at the supports are R_A = 100 \, \text{N} R A = 100   N R_A = 100 \, \text{N} R A ​ = 100 N and R_B = 100 \, \text{N} R B = 100   N R_B = 100 \, \text{N} R B ​ = 100 N .
Exercise 2
A beam of 6 \, \text{m} 6   m 6 \, \text{m} 6 m is hung horizontally and supported by a central support. If a force of 300 \, \text{N} 300   N 300 \, \text{N} 300 N is applied at 2 \, \text{m} 2   m 2 \, \text{m} 2 m from one end, calculate the reactions at the supports using matrices.
Solution :
We define the reactions in the supports as R_A R A R_A R A ​ and R_B R B R_B R B ​ .
The equilibrium equations are:
R_A + R_B = 300 R A + R B = 300 R_A + R_B = 300 R A ​ + R B ​ = 300 (Equation 1)
R_B \cdot 6 - 300 \cdot 2 = 0 R B ⋅ 6 − 300 ⋅ 2 = 0 R_B \cdot 6 - 300 \cdot 2 = 0 R B ​ ⋅ 6 − 300 ⋅ 2 = 0 (Equation 2)
We can rewrite these equations in matrix form. The reactions in the supports can be represented as a column matrix:
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix} [ R A R B ] \begin{bmatrix}
R_A \\
R_B
\end{bmatrix} [ R A ​ R B ​ ​ ]
The equations can be written as:
\begin{bmatrix}
1 & 1 \\
0 & 6
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
300 \\
600
\end{bmatrix} [ 1 1 0 6 ] [ R A R B ] = [ 300 600 ] \begin{bmatrix}
1 & 1 \\
0 & 6
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
300 \\
600
\end{bmatrix} [ 1 0 ​ 1 6 ​ ] [ R A ​ R B ​ ​ ] = [ 300 600 ​ ]
Solving the System of Equations
From the first equation:
R_A + R_B = 300 \quad (1) R A + R B = 300 ( 1 ) R_A + R_B = 300 \quad (1) R A ​ + R B ​ = 300 ( 1 )
From the second equation:
6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2) 6 R B = 600    ⟹    R B = 100   N ( 2 ) 6R_B = 600 \implies R_B = 100 \, \text{N} \quad (2) 6 R B ​ = 600 ⟹ R B ​ = 100 N ( 2 )
Now we substitute the value of R_B R B R_B R B ​ in equation (1):
R_A + 100 = 300 R A + 100 = 300 R_A + 100 = 300 R A ​ + 100 = 300
From which we obtain:
R_A = 300 - 100 = 200 \, \text{N} R A = 300 − 100 = 200   N R_A = 300 - 100 = 200 \, \text{N} R A ​ = 300 − 100 = 200 N
Final Results
The reactions in the supports are:
R_A = 200 \, \text{N} R A = 200   N R_A = 200 \, \text{N} R A ​ = 200 N
R_B = 100 \, \text{N} R B = 100   N R_B = 100 \, \text{N} R B ​ = 100 N
Exercise 3: Beam with Multiple Forces
Let's consider a beam of 5 \, \text{m} 5   m 5 \, \text{m} 5 m supported by two supports A and B. A force of 400 \, \text{N} 400   N 400 \, \text{N} 400 N is applied to 1 \, \text{m} 1   m 1 \, \text{m} 1 m from A and a force of 200 \, \text{N} 200   N 200 \, \text{N} 200 N is applied to 4 \, \text{m} 4   m 4 \, \text{m} 4 m from A. Calculate the reactions in the supports A and B using matrices.
Solution :
We define the reactions in the supports as R_A R A R_A R A ​ and R_B R B R_B R B ​ .
The equilibrium equations are:
R_A + R_B = 400 + 200 \quad (1) R A + R B = 400 + 200 ( 1 ) R_A + R_B = 400 + 200 \quad (1) R A ​ + R B ​ = 400 + 200 ( 1 )
R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2) R B ⋅ 5 − 400 ⋅ 1 − 200 ⋅ 4 = 0 ( 2 ) R_B \cdot 5 - 400 \cdot 1 - 200 \cdot 4 = 0 \quad (2) R B ​ ⋅ 5 − 400 ⋅ 1 − 200 ⋅ 4 = 0 ( 2 )
We can write these equations in matrix form:
\begin{bmatrix}
1 & 1 \\
0 & 5
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
600 \\
800
\end{bmatrix} [ 1 1 0 5 ] [ R A R B ] = [ 600 800 ] \begin{bmatrix}
1 & 1 \\
0 & 5
\end{bmatrix}
\begin{bmatrix}
R_A \\
R_B
\end{bmatrix}
=
\begin{bmatrix}
600 \\
800
\end{bmatrix} [ 1 0 ​ 1 5 ​ ] [ R A ​ R B ​ ​ ] = [ 600 800 ​ ]
Solving the System of Equations
From the first equation:
R_A + R_B = 600 \quad (1) R A + R B = 600 ( 1 ) R_A + R_B = 600 \quad (1) R A ​ + R B ​ = 600 ( 1 )
From the second equation:
5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2) 5 R B = 800    ⟹    R B = 160   N ( 2 ) 5R_B = 800 \implies R_B = 160 \, \text{N} \quad (2) 5 R B ​ = 800 ⟹ R B ​ = 160 N ( 2 )
Now we substitute the value of R_B R B R_B R B ​ in equation (1):
R_A + 160 = 600 R A + 160 = 600 R_A + 160 = 600 R A ​ + 160 = 600
From which we obtain:
R_A = 600 - 160 = 440 \, \text{N} R A = 600 − 160 = 440   N R_A = 600 - 160 = 440 \, \text{N} R A ​ = 600 − 160 = 440 N
Final Results
The reactions in the supports are:
R_A = 440 \, \text{N} R A = 440   N R_A = 440 \, \text{N} R A ​ = 440 N
R_B = 160 \, \text{N} R B = 160   N R_B = 160 \, \text{N} R B ​ = 160 N
Commenti
Posta un commento