Esercizi sul Moto Laminare

Esercizi sul Moto Laminare +Esercizi sul Moto Laminare
+Esercizi sul Moto Laminare

Versione italiana

Esercizi sul Moto Laminare

Concetti Chiave

  1. Moto Laminare: Un tipo di flusso in cui le particelle di fluido si muovono in strati paralleli senza mescolarsi. Si verifica a basse velocità e in fluidi con alta viscosità.

  2. Numero di Reynolds (Re): Un parametro adimensionale che determina il regime di flusso. È definito come:
    Re = \frac{\rho v L}{\mu}Re=ρvLμRe = \frac{\rho v L}{\mu}
    dove:

    • $ \rho $ = densità del fluido (kg/m³)

    • vvv = velocità del fluido (m/s)

    • LLL = lunghezza caratteristica (m)

    • \muμ\mu = viscosità dinamica del fluido (Pa·s)

    • Se Re < 2000Re<2000Re < 2000, il flusso è laminare.

    • Se Re > 4000Re>4000Re > 4000, il flusso è turbolento.

  3. Viscosità: Una misura della resistenza di un fluido al flusso. Maggiore è la viscosità, maggiore è la resistenza al moto.

  4. Legge di Poiseuille: Descrive il flusso di un fluido viscoso attraverso un tubo cilindrico. La portata volumetrica QQQ è data da:
    Q = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}Q=πr4(P1P2)8μLQ = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}
    dove:

    • rrr = raggio del tubo (m)
    • P_1 - P_2P1P2P_1 - P_2 = differenza di pressione (Pa)
    • LLL = lunghezza del tubo (m)

Esercizio 1: Calcolo del Numero di Reynolds

Problema

Un fluido con densità \rho = 1000 \, \text{kg/m}^3ρ=1000kg/m3\rho = 1000 \, \text{kg/m}^3 e viscosità \mu = 0.001 \, \text{Pa*s}μ=0.001Pa*s\mu = 0.001 \, \text{Pa*s} scorre attraverso un tubo con raggio r = 0.01 \, \text{m}r=0.01mr = 0.01 \, \text{m} a una velocità v = 0.5 \, \text{m/s}v=0.5m/sv = 0.5 \, \text{m/s}. Calcola il numero di Reynolds.

Soluzione

  1. Calcola la lunghezza caratteristica:
    L = 2r = 2 \times 0.01 = 0.02 \, \text{m}L=2r=2×0.01=0.02mL = 2r = 2 \times 0.01 = 0.02 \, \text{m}

  2. Calcola il numero di Reynolds:
    Re = \frac{\rho v L}{\mu} = \frac{1000 \times 0.5 \times 0.02}{0.001} = 10000Re=ρvLμ=1000×0.5×0.020.001=10000Re = \frac{\rho v L}{\mu} = \frac{1000 \times 0.5 \times 0.02}{0.001} = 10000

  3. Conclusione: Poiché Re > 4000Re>4000Re > 4000, il flusso è turbolento.

Esercizio 2: Portata Volumetrica con la Legge di Poiseuille

Problema

Calcola la portata volumetrica QQQ di un fluido che scorre attraverso un tubo di raggio r = 0.01 \, \text{m}r=0.01mr = 0.01 \, \text{m} e lunghezza L = 1 \, \text{m}L=1mL = 1 \, \text{m} con una differenza di pressione P_1 - P_2 = 500 \, \text{Pa}P1P2=500PaP_1 - P_2 = 500 \, \text{Pa} e viscosità \mu = 0.001 \, \text{Pa*s}μ=0.001Pa*s\mu = 0.001 \, \text{Pa*s}.

Soluzione

  1. Applica la legge di Poiseuille:
    Q = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}Q=πr4(P1P2)8μLQ = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}

  2. Calcola QQQ:
    Q = \frac{\pi (0.01)^4 (500)}{8 \times 0.001 \times 1}Q=π(0.01)4(500)8×0.001×1Q = \frac{\pi (0.01)^4 (500)}{8 \times 0.001 \times 1}
    Q = \frac{\pi \times 1 \times 10^{-8} \times 500}{0.008}Q=π×1×108×5000.008Q = \frac{\pi \times 1 \times 10^{-8} \times 500}{0.008}
    Q \approx \frac{1.57 \times 10^{-5}}{0.008} \approx 1.96 \times 10^{-3} \, \text{m}^3/\text{s}Q1.57×1050.0081.96×103m3/sQ \approx \frac{1.57 \times 10^{-5}}{0.008} \approx 1.96 \times 10^{-3} \, \text{m}^3/\text{s}

  3. Conclusione: La portata volumetrica è di circa 1.96 \, \text{L/s}1.96L/s1.96 \, \text{L/s}.

Esercizio 3: Viscosità e Flusso Laminare

Problema

Un fluido con densità \rho = 850 \, \text{kg/m}^3ρ=850kg/m3\rho = 850 \, \text{kg/m}^3 e viscosità \mu = 0.002 \, \text{Pa*s}μ=0.002Pa*s\mu = 0.002 \, \text{Pa*s} scorre attraverso un tubo di raggio r = 0.005 \, \text{m}r=0.005mr = 0.005 \, \text{m} a una velocità v = 0.1 \, \text{m/s}v=0.1m/sv = 0.1 \, \text{m/s}. Determina se il flusso è laminare o turbolento.

Soluzione

  1. Calcola la lunghezza caratteristica:
    L = 2r = 2 \times 0.005 = 0.01 \, \text{m}L=2r=2×0.005=0.01mL = 2r = 2 \times 0.005 = 0.01 \, \text{m}

  2. Calcola il numero di Reynolds:
    Re = \frac{\rho v L}{\mu} = \frac{850 \times 0.1 \times 0.01}{0.002}Re=ρvLμ=850×0.1×0.010.002Re = \frac{\rho v L}{\mu} = \frac{850 \times 0.1 \times 0.01}{0.002}
    Re = \frac{0.85}{0.002} = 425Re=0.850.002=425Re = \frac{0.85}{0.002} = 425

  3. Conclusione: Poiché Re < 2000Re<2000Re < 2000, il flusso è laminare.

Esercizio 4: Analisi della Viscosità

Problema

Un fluido scorre attraverso un tubo di raggio r = 0.02 \, \text{m}r=0.02mr = 0.02 \, \text{m} e lunghezza L = 2 \, \text{m}L=2mL = 2 \, \text{m} con una portata volumetrica Q = 0.0005 \, \text{m}^3/\text{s}Q=0.0005m3/sQ = 0.0005 \, \text{m}^3/\text{s}. Se la differenza di pressione tra le estremità del tubo è P_1 - P_2 = 1000 \, \text{Pa}P1P2=1000PaP_1 - P_2 = 1000 \, \text{Pa}, calcola la viscosità \muμ\mu del fluido.

Soluzione

  1. Applica la legge di Poiseuille:
    Q = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}Q=πr4(P1P2)8μLQ = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}

  2. Isola \muμ\mu:
    \mu = \frac{\pi r^4 (P_1 - P_2)}{8 Q L}μ=πr4(P1P2)8QL\mu = \frac{\pi r^4 (P_1 - P_2)}{8 Q L}

  3. Calcola \muμ\mu:
    \mu = \frac{\pi (0.02)^4 (1000)}{8 \times 0.0005 \times 2}μ=π(0.02)4(1000)8×0.0005×2\mu = \frac{\pi (0.02)^4 (1000)}{8 \times 0.0005 \times 2}
    \mu = \frac{\pi \times 1.6 \times 10^{-7} \times 1000}{0.008}μ=π×1.6×107×10000.008\mu = \frac{\pi \times 1.6 \times 10^{-7} \times 1000}{0.008}
    \mu = \frac{5.0265 \times 10^{-4}}{0.008} \approx 0.0633 \, \text{Pa*s}μ=5.0265×1040.0080.0633Pa*s\mu = \frac{5.0265 \times 10^{-4}}{0.008} \approx 0.0633 \, \text{Pa*s}

  4. Conclusione: La viscosità del fluido è di circa 0.0633 \, \text{Pa*s}0.0633Pa*s0.0633 \, \text{Pa*s}.

English version

Laminar Flow Exercises

Key Concepts

  1. Laminar Flow: A type of flow in which fluid particles move in parallel layers without mixing. It occurs at low velocities and in fluids with high viscosity.

  2. Reynolds Number (Re): A dimensionless parameter that determines the flow regime. It is defined as:
    Re = \frac{\rho v L}{\mu}Re=ρvLμRe = \frac{\rho v L}{\mu}
    where:

  • $ \rho $ = density of the fluid (kg/m³)

  • vvv = velocity of the fluid (m/s)

  • LLL = characteristic length (m)

  • \muμ\mu = dynamic viscosity of the fluid (Pa s)

  • If Re < 2000Re<2000Re < 2000, the flow is laminar.

  • If Re > 4000Re>4000Re > 4000, the flow is turbulent.

  1. Viscosity: A measure of a fluid's resistance to flow. The higher the viscosity, the greater the resistance to motion.

  2. Poiseuille's Law: Describes the flow of a viscous fluid through a cylindrical tube. The volumetric flow rate QQQ is given by:
    Q = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}Q=πr4(P1P2)8μLQ = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}
    where:

  • rrr = radius of the pipe (m)
  • P_1 - P_2P1P2P_1 - P_2 = pressure difference (Pa)
  • LLL = length of the pipe (m)

Exercise 1: Calculating the Reynolds Number

Problem

A fluid with density \rho = 1000 \, \text{kg/m}^3ρ=1000kg/m3\rho = 1000 \, \text{kg/m}^3 and viscosity \mu = 0.001 \, \text{Pa*s}μ=0.001Pa*s\mu = 0.001 \, \text{Pa*s} flows through a pipe with radius r = 0.01 \, \text{m}r=0.01mr = 0.01 \, \text{m} at a speed v = 0.5 \, \text{m/s}v=0.5m/sv = 0.5 \, \text{m/s}. Calculate the Reynolds number.

Solution

  1. Calculate the characteristic length:
    L = 2r = 2 \times 0.01 = 0.02 \, \text{m}L=2r=2×0.01=0.02mL = 2r = 2 \times 0.01 = 0.02 \, \text{m}

  2. Calculate the Reynolds number:
    Re = \frac{\rho v L}{\mu} = \frac{1000 \times 0.5 \times 0.02}{0.001} = 10000Re=ρvLμ=1000×0.5×0.020.001=10000Re = \frac{\rho v L}{\mu} = \frac{1000 \times 0.5 \times 0.02}{0.001} = 10000

  3. Conclusion: Since Re > 4000Re>4000Re > 4000, the flow is turbulent.

Exercise 2: Volumetric Flow Rate with Poiseuille's Law

Problem

Calculate the volumetric flow rate QQQ of a fluid flowing through a tube of radius r = 0.01 \, \text{m}r=0.01mr = 0.01 \, \text{m} and length L = 1 \, \text{m}L=1mL = 1 \, \text{m} with a pressure difference P_1 - P_2 = 500 \, \text{Pa}P1P2=500PaP_1 - P_2 = 500 \, \text{Pa} and viscosity \mu = 0.001 \, \text{Pa*s}μ=0.001Pa*s\mu = 0.001 \, \text{Pa*s}.

Solution

1.Apply Poiseuille's law: Q = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}Q=πr4(P1P2)8μLQ = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}
2. Calculate QQQ: Q = \frac{\pi (0.01)^4 (500)}{8 \times 0.001 \times 1}Q=π(0.01)4(500)8×0.001×1Q = \frac{\pi (0.01)^4 (500)}{8 \times 0.001 \times 1}
Q = \frac{\pi \times 1 \times 10^{-8 } \times 500}{0.008}Q=π×1×108×5000.008Q = \frac{\pi \times 1 \times 10^{-8 } \times 500}{0.008}
Q \approx \frac{1.57 \times 10^{-5}}{0.008} \approx 1.96 \times 10^{-3} \, \text{m}^3/\text{s}Q1.57×1050.0081.96×103m3/sQ \approx \frac{1.57 \times 10^{-5}}{0.008} \approx 1.96 \times 10^{-3} \, \text{m}^3/\text{s}
3. Conclusion: The volumetric flow rate is approximately 1.96 \, \text{L/s}1.96L/s1.96 \, \text{L/s}.

Exercise 3: Viscosity and Laminar Flow

Problem

A fluid with density \rho = 850 \, \text{kg/m}^3ρ=850kg/m3\rho = 850 \, \text{kg/m}^3 and viscosity \mu = 0.002 \, \text{Pa*s}μ=0.002Pa*s\mu = 0.002 \, \text{Pa*s} flows through a tube of radius r = 0.005 \, \text{m}r=0.005mr = 0.005 \, \text{m} at a velocity v = 0.1 \, \text{m/s}v=0.1m/sv = 0.1 \, \text{m/s}. Determine whether the flow is laminar or turbulent.

Solution

  1. Calculate the characteristic length:
    L = 2r = 2 \times 0.005 = 0.01 \, \text{m}L=2r=2×0.005=0.01mL = 2r = 2 \times 0.005 = 0.01 \, \text{m}

  2. Calculate the Reynolds number:
    Re = \frac{\rho v L}{\mu} = \frac{850 \times 0.1 \times 0.01}{0.002}Re=ρvLμ=850×0.1×0.010.002Re = \frac{\rho v L}{\mu} = \frac{850 \times 0.1 \times 0.01}{0.002}
    Re = \frac{0.85}{0.002} = 425Re=0.850.002=425Re = \frac{0.85}{0.002} = 425

  3. Conclusion: Since Re < 2000Re<2000Re < 2000, the flow is laminar.

Exercise 4: Viscosity Analysis

Problem

A fluid flows through a tube of radius r = 0.02 \, \text{m}r=0.02mr = 0.02 \, \text{m} and length L = 2 \, \text{m}L=2mL = 2 \, \text{m} with a volumetric flow rate Q = 0.0005 \, \text{m}^3/\text{s}Q=0.0005m3/sQ = 0.0005 \, \text{m}^3/\text{s}. If the pressure difference between the ends of the tube is P_1 - P_2 = 1000 \, \text{Pa}P1P2=1000PaP_1 - P_2 = 1000 \, \text{Pa}, calculate the viscosity \muμ\mu of the fluid.

Solution

  1. Apply Poiseuille's law: Q = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}Q=πr4(P1P2)8μLQ = \frac{\pi r^4 (P_1 - P_2)}{8 \mu L}

  2. Isolate \muμ\mu: \mu = \frac{\pi r^4 (P_1 - P_2)}{8 Q L}μ=πr4(P1P2)8QL\mu = \frac{\pi r^4 (P_1 - P_2)}{8 Q L}

  3. Calculate \muμ\mu: \mu = \frac{\pi (0.02)^4 (1000 )}{8 \times 0.0005 \times 2}μ=π(0.02)4(1000)8×0.0005×2\mu = \frac{\pi (0.02)^4 (1000 )}{8 \times 0.0005 \times 2} \mu = \frac{\pi \times 1.6 \times 10^{-7} \times 1000}{0.008}μ=π×1.6×107×10000.008\mu = \frac{\pi \times 1.6 \times 10^{-7} \times 1000}{0.008} \mu = \frac{5.0265 \times 10^{-4}}{0.008} \approx 0.0633 \, \text{Pa*s}μ=5.0265×1040.0080.0633Pa*s\mu = \frac{5.0265 \times 10^{-4}}{0.008} \approx 0.0633 \, \text{Pa*s}

  4. Conclusion: The viscosity of the fluid is approximately 0.0633 \, \text{Pa*s}0.0633Pa*s0.0633 \, \text{Pa*s}.

Commenti