Esercizi sul Baricentro

Esercizi sul Baricentro Esercizi sul Baricentro
Esercizi sul Baricentro

Versione italiana

Esercizi sul Baricentro

Concetti Chiave

Il baricentro (o centro di massa) di un sistema di punti è il punto in cui si può considerare concentrata tutta la massa del sistema. Per un sistema di punti, il baricentro GGG è dato dalla formula:

G = \left( \frac{x_1 + x_2 + \ldots + x_n}{n}, \frac{y_1 + y_2 + \ldots + y_n}{n} \right) G=(x1+x2++xnn,y1+y2++ynn) G = \left( \frac{x_1 + x_2 + \ldots + x_n}{n}, \frac{y_1 + y_2 + \ldots + y_n}{n} \right)

dove (x_i, y_i)(xi,yi)(x_i, y_i) sono le coordinate dei punti e nnn è il numero totale di punti.

Esercizi

Esercizio 1: Baricentro di un Triangolo

Dati

Considera un triangolo con i vertici A(1, 2)A(1,2)A(1, 2), B(4, 6)B(4,6)B(4, 6) e C(7, 2)C(7,2)C(7, 2).

Obiettivo

Calcola le coordinate del baricentro GGG del triangolo.

Soluzione

Utilizziamo la formula del baricentro:

G = \left( \frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3} \right) G=(xA+xB+xC3,yA+yB+yC3) G = \left( \frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3} \right)

Sostituendo i valori:

G = \left( \frac{1 + 4 + 7}{3}, \frac{2 + 6 + 2}{3} \right) = \left( \frac{12}{3}, \frac{10}{3} \right) = (4, \frac{10}{3}) G=(1+4+73,2+6+23)=(123,103)=(4,103) G = \left( \frac{1 + 4 + 7}{3}, \frac{2 + 6 + 2}{3} \right) = \left( \frac{12}{3}, \frac{10}{3} \right) = (4, \frac{10}{3})

Quindi, il baricentro GGG ha coordinate (4, \frac{10}{3})(4,103)(4, \frac{10}{3}).

Esercizio 2: Baricentro di un Sistema di Punti

Dati

Considera i punti P_1(2, 3)P1(2,3)P_1(2, 3), P_2(4, 5)P2(4,5)P_2(4, 5), e P_3(6, 1)P3(6,1)P_3(6, 1).

Obiettivo

Calcola le coordinate del baricentro GGG del sistema di punti.

Soluzione

Utilizziamo la formula del baricentro:

G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) G=(x1+x2+x33,y1+y2+y33) G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)

Sostituendo i valori:

G = \left( \frac{2 + 4 + 6}{3}, \frac{3 + 5 + 1}{3} \right) = \left( \frac{12}{3}, \frac{9}{3} \right) = (4, 3) G=(2+4+63,3+5+13)=(123,93)=(4,3) G = \left( \frac{2 + 4 + 6}{3}, \frac{3 + 5 + 1}{3} \right) = \left( \frac{12}{3}, \frac{9}{3} \right) = (4, 3)

Quindi, il baricentro GGG ha coordinate (4, 3)(4,3)(4, 3).

Esercizio 3: Baricentro di un Quadrilatero

Dati

Considera un quadrilatero con i vertici A(0, 0)A(0,0)A(0, 0), B(2, 0)B(2,0)B(2, 0), C(2, 2)C(2,2)C(2, 2), e D(0, 2)D(0,2)D(0, 2).

Obiettivo

Calcola le coordinate del baricentro GGG del quadrilatero.

Soluzione

Utilizziamo la formula del baricentro:

G = \left( \frac{x_A + x_B + x_C + x_D}{4}, \frac{y_A + y_B + y_C + y_D}{4} \right) G=(xA+xB+xC+xD4,yA+yB+yC+yD4) G = \left( \frac{x_A + x_B + x_C + x_D}{4}, \frac{y_A + y_B + y_C + y_D}{4} \right)

Sostituendo i valori:

G = \left( \frac{0 + 2 + 2 + 0}{4}, \frac{0 + 0 + 2 + 2}{4} \right) = \left( \frac{4}{4}, \frac{4}{4} \right) = (1, 1) G=(0+2+2+04,0+0+2+24)=(44,44)=(1,1) G = \left( \frac{0 + 2 + 2 + 0}{4}, \frac{0 + 0 + 2 + 2}{4} \right) = \left( \frac{4}{4}, \frac{4}{4} \right) = (1, 1)

Quindi, il baricentro GGG ha coordinate (1, 1)(1,1)(1, 1).

English version

Exercises on the Center of Mass

Key Concepts

The center of mass (or center of mass) of a system of points is the point where all the mass of the system can be considered concentrated. For a system of points, the center of mass GGG is given by the formula:

G = \left( \frac{x_1 + x_2 + \ldots + x_n}{n}, \frac{y_1 + y_2 + \ldots + y_n}{n} \right) G=(x1+x2++xnn,y1+y2++ynn) G = \left( \frac{x_1 + x_2 + \ldots + x_n}{n}, \frac{y_1 + y_2 + \ldots + y_n}{n} \right)

where (x_i, y_i)(xi,yi)(x_i, y_i) are the coordinates of the points and nnn is the total number of points.

Exercises

Exercise 1: Center of Mass of a Triangle

Data

Consider a triangle with vertices A(1, 2)A(1,2)A(1, 2), B(4, 6)B(4,6)B(4, 6) and C(7, 2)C(7,2)C(7, 2).

Objective

Calculate the coordinates of the centroid GGG of the triangle.

Solution

We use the centroid formula:

G = \left( \frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3} \right) G=(xA+xB+xC3,yA+yB+yC3) G = \left( \frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3} \right)

Substituting the values:

G = \left( \frac{1 + 4 + 7}{3}, \frac{2 + 6 + 2}{3} \right) = \left( \frac{12}{3}, \frac{10}{3} \right) = (4, \frac{10}{3}) G=(1+4+73,2+6+23)=(123,103)=(4,103) G = \left( \frac{1 + 4 + 7}{3}, \frac{2 + 6 + 2}{3} \right) = \left( \frac{12}{3}, \frac{10}{3} \right) = (4, \frac{10}{3})

So, the centroid GGG has coordinates (4, \frac{10}{3})(4,103)(4, \frac{10}{3}).

Exercise 2: Center of Mass of a System of Points

Data

Consider the points P_1(2, 3)P1(2,3)P_1(2, 3), P_2(4, 5)P2(4,5)P_2(4, 5), and P_3(6, 1)P3(6,1)P_3(6, 1).

Objective

Calculate the coordinates of the center of mass GGG of the system of points.

Solution

We use the centroid formula:

G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) G=(x1+x2+x33,y1+y2+y33) G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)

Substituting the values:

G = \left( \frac{2 + 4 + 6}{3}, \frac{3 + 5 + 1}{3} \right) = \left( \frac{12}{3}, \frac{9}{3} \right) = (4, 3) G=(2+4+63,3+5+13)=(123,93)=(4,3) G = \left( \frac{2 + 4 + 6}{3}, \frac{3 + 5 + 1}{3} \right) = \left( \frac{12}{3}, \frac{9}{3} \right) = (4, 3)

So, the centroid GGG has coordinates (4, 3)(4,3)(4, 3).

Exercise 3: Centroid of a Quadrilateral

Data

Consider a quadrilateral with vertices A(0, 0)A(0,0)A(0, 0), B(2, 0)B(2,0)B(2, 0), C(2, 2)C(2,2)C(2, 2), and D(0, 2)D(0,2)D(0, 2).

Objective

Calculate the coordinates of the centroid GGG of the quadrilateral.

Solution

We use the centroid formula:

G = \left( \frac{x_A + x_B + x_C + x_D}{4}, \frac{y_A + y_B + y_C + y_D}{4} \right) G=(xA+xB+xC+xD4,yA+yB+yC+yD4) G = \left( \frac{x_A + x_B + x_C + x_D}{4}, \frac{y_A + y_B + y_C + y_D}{4} \right)

Substituting the values:

G = \left( \frac{0 + 2 + 2 + 0}{4}, \frac{0 + 0 + 2 + 2}{4} \right) = \left( \frac{4}{4}, \frac{4}{4} \right) = (1, 1) G=(0+2+2+04,0+0+2+24)=(44,44)=(1,1) G = \left( \frac{0 + 2 + 2 + 0}{4}, \frac{0 + 0 + 2 + 2}{4} \right) = \left( \frac{4}{4}, \frac{4}{4} \right) = (1, 1)

So, the centroid GGG has coordinates (1, 1)(1,1)(1, 1).

Commenti