Esercizi sui versori

Esercizi sui versori +Esercizi sui versori
+Esercizi sui versori

Versione italiana

Esercizi sui versori

Definizione di Versore

Un versore è un vettore \mathbf{u}u\mathbf{u} che soddisfa la condizione:

\|\mathbf{u}\| = 1
u=1\|\mathbf{u}\| = 1

Dove \|\mathbf{u}\|u\|\mathbf{u}\| è la norma del vettore \mathbf{u}u\mathbf{u}.

Come Trovare un Versore

Per ottenere un versore da un vettore \mathbf{v}v\mathbf{v}, puoi normalizzarlo. La normalizzazione di un vettore \mathbf{v}v\mathbf{v} è data dalla formula:

\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}
u=vv\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}

Esercizi sui Versori

Esercizio 1: Trovare il Versore di un Vettore

Trova il versore del vettore:

\mathbf{v} = (3, 4)
v=(3,4)\mathbf{v} = (3, 4)

Soluzione:

  1. Calcola la norma di \mathbf{v}v\mathbf{v}:
\|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
v=32+42=9+16=25=5\|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
  1. Normalizza il vettore:
\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, 4)}{5} = \left(\frac{3}{5}, \frac{4}{5}\right)
u=vv=(3,4)5=(35,45)\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, 4)}{5} = \left(\frac{3}{5}, \frac{4}{5}\right)

Quindi, il versore di \mathbf{v}v\mathbf{v} è \mathbf{u} = \left(\frac{3}{5}, \frac{4}{5}\right)u=(35,45)\mathbf{u} = \left(\frac{3}{5}, \frac{4}{5}\right).

Esercizio 2: Verifica che un Vettore è un Versore

Verifica se il vettore \mathbf{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)u=(12,32)\mathbf{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) è un versore.

Soluzione:

Calcola la norma di \mathbf{u}u\mathbf{u}:

\|\mathbf{u}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1
u=(12)2+(32)2=14+34=1=1\|\mathbf{u}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1

Poiché la norma è 1, \mathbf{u}u\mathbf{u} è un versore.

Esercizio 3: Somma di Versori

Calcola la somma dei versori:

\mathbf{u_1} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text{e} \quad \mathbf{u_2} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
u1=(12,12)eu2=(12,12)\mathbf{u_1} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text{e} \quad \mathbf{u_2} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)

Soluzione:

Sommiamo i versori:

\mathbf{u} = \mathbf{u_1} + \mathbf{u_2} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = (0, \sqrt{2})
u=u1+u2=(1212,12+12)=(0,2)\mathbf{u} = \mathbf{u_1} + \mathbf{u_2} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = (0, \sqrt{2})

Ora, per trovare il versore di \mathbf{u}u\mathbf{u}:

  1. Calcola la norma di \mathbf{u}u\mathbf{u}:
\|\mathbf{u}\| = \sqrt{0^2 + (\sqrt{2})^2} = \sqrt{2}
u=02+(2)2=2\|\mathbf{u}\| = \sqrt{0^2 + (\sqrt{2})^2} = \sqrt{2}
  1. Normalizza \mathbf{u}u\mathbf{u}:
\mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{(0, \sqrt{2})}{\sqrt{2}} = (0, 1)
v=uu=(0,2)2=(0,1)\mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{(0, \sqrt{2})}{\sqrt{2}} = (0, 1)

English version

Versor Exercises

Versor Definition

A versor is a vector \mathbf{u}u\mathbf{u} that satisfies the condition:

\|\mathbf{u}\| = 1
u=1\|\mathbf{u}\| = 1

Where \|\mathbf{u}\|u\|\mathbf{u}\| is the norm of the vector \mathbf{u}u\mathbf{u}.

How to Find a Versor

To get a versor from a vector \mathbf{v}v\mathbf{v}, you can normalize it. The normalization of a vector \mathbf{v}v\mathbf{v} is given by the formula:

\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}
u=vv\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}

Exercises on Versors

Exercise 1: Finding the Versor of a Vector

Find the versor of the vector:

\mathbf{v} = (3, 4)
v=(3,4)\mathbf{v} = (3, 4)

Solution:

  1. Calculate the norm of \mathbf{v}v\mathbf{v}:
\|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 
v=32+42=9+16=25=5\|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
  1. Normalize the vector:
\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, 4)}{5} = \left(\frac{3}{5}, \frac{4}{5}\right) 
u=vv=(3,4)5=(35,45)\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, 4)}{5} = \left(\frac{3}{5}, \frac{4}{5}\right)

Thus, the unit vector of \mathbf{v}v\mathbf{v} is \mathbf{u} = \left(\frac{3}{5}, \frac{4}{5}\right)u=(35,45)\mathbf{u} = \left(\frac{3}{5}, \frac{4}{5}\right).

Exercise 2: Verify that a Vector is a Vector Verify whether the vector \mathbf{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)u=(12,32)\mathbf{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) is a vector.

Solution: Compute the norm of \mathbf{u}u\mathbf{u}:

\|\mathbf{u}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 
u=(12)2+(32)2=14+34=1=1\|\mathbf{u}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1

Since the norm is 1, \mathbf{u}u\mathbf{u} is a unit vector.

Exercise 3: Sum of Versors Calculate the sum of the unit vectors:

\mathbf{u_1} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text{e} \quad \mathbf{u_2} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) 
u1=(12,12)eu2=(12,12)\mathbf{u_1} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text{e} \quad \mathbf{u_2} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right)

Solution: Let's add the unit vectors:

\mathbf{u} = \mathbf{u_1} + \mathbf{u_2} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = (0, \sqrt{2}) 
u=u1+u2=(1212,12+12)=(0,2)\mathbf{u} = \mathbf{u_1} + \mathbf{u_2} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = (0, \sqrt{2})

Now, to find the unit vector of \mathbf{u}u\mathbf{u}:

  1. Calculate the norm of \mathbf{u}u\mathbf{u}:
\|\mathbf{u}\| = \sqrt{0^2 + (\sqrt{2})^2} = \sqrt{2} 
u=02+(2)2=2\|\mathbf{u}\| = \sqrt{0^2 + (\sqrt{2})^2} = \sqrt{2}
  1. Normalize \mathbf{u}u\mathbf{u}:
\mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{(0, \sqrt{2})}{\sqrt{2}} = (0, 1) 
v=uu=(0,2)2=(0,1)\mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{(0, \sqrt{2})}{\sqrt{2}} = (0, 1)

Commenti