Versione italiana
Esercizi sui versori
Definizione di Versore
Un versore è un vettore \mathbf{u} u \mathbf{u} u che soddisfa la condizione:
\|\mathbf{u}\| = 1 ∥ u ∥ = 1 \|\mathbf{u}\| = 1 ∥ u ∥ = 1
Dove \|\mathbf{u}\| ∥ u ∥ \|\mathbf{u}\| ∥ u ∥ è la norma del vettore \mathbf{u} u \mathbf{u} u .
Come Trovare un Versore
Per ottenere un versore da un vettore \mathbf{v} v \mathbf{v} v , puoi normalizzarlo. La normalizzazione di un vettore \mathbf{v} v \mathbf{v} v è data dalla formula:
\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} u = v ∥ v ∥ \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} u = ∥ v ∥ v ​
Esercizi sui Versori
Esercizio 1: Trovare il Versore di un Vettore
Trova il versore del vettore:
\mathbf{v} = (3, 4) v = ( 3 , 4 ) \mathbf{v} = (3, 4) v = ( 3 , 4 )
Soluzione:
Calcola la norma di \mathbf{v} v \mathbf{v} v :
\|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 ∥ v ∥ = 3 2 + 4 2 = 9 + 16 = 25 = 5 \|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 ∥ v ∥ = 3 2 + 4 2 ​ = 9 + 16 ​ = 25 ​ = 5
Normalizza il vettore:
\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, 4)}{5} = \left(\frac{3}{5}, \frac{4}{5}\right) u = v ∥ v ∥ = ( 3 , 4 ) 5 = ( 3 5 , 4 5 ) \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, 4)}{5} = \left(\frac{3}{5}, \frac{4}{5}\right) u = ∥ v ∥ v ​ = 5 ( 3 , 4 ) ​ = ( 5 3 ​ , 5 4 ​ )
Quindi, il versore di \mathbf{v} v \mathbf{v} v è \mathbf{u} = \left(\frac{3}{5}, \frac{4}{5}\right) u = ( 3 5 , 4 5 ) \mathbf{u} = \left(\frac{3}{5}, \frac{4}{5}\right) u = ( 5 3 ​ , 5 4 ​ ) .
Esercizio 2: Verifica che un Vettore è un Versore
Verifica se il vettore \mathbf{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) u = ( 1 2 , 3 2 ) \mathbf{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) u = ( 2 1 ​ , 2 3 ​ ​ ) è un versore.
Soluzione:
Calcola la norma di \mathbf{u} u \mathbf{u} u :
\|\mathbf{u}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 ∥ u ∥ = ( 1 2 ) 2 + ( 3 2 ) 2 = 1 4 + 3 4 = 1 = 1 \|\mathbf{u}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 ∥ u ∥ = ( 2 1 ​ ) 2 + ( 2 3 ​ ​ ) 2 ​ = 4 1 ​ + 4 3 ​ ​ = 1 ​ = 1
Poiché la norma è 1, \mathbf{u} u \mathbf{u} u è un versore.
Esercizio 3: Somma di Versori
Calcola la somma dei versori:
\mathbf{u_1} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text{e} \quad \mathbf{u_2} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) u 1 = ( 1 2 , 1 2 ) e u 2 = ( − 1 2 , 1 2 ) \mathbf{u_1} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text{e} \quad \mathbf{u_2} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) u 1 ​ = ( 2 ​ 1 ​ , 2 ​ 1 ​ ) e u 2 ​ = ( − 2 ​ 1 ​ , 2 ​ 1 ​ )
Soluzione:
Sommiamo i versori:
\mathbf{u} = \mathbf{u_1} + \mathbf{u_2} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = (0, \sqrt{2}) u = u 1 + u 2 = ( 1 2 − 1 2 , 1 2 + 1 2 ) = ( 0 , 2 ) \mathbf{u} = \mathbf{u_1} + \mathbf{u_2} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = (0, \sqrt{2}) u = u 1 ​ + u 2 ​ = ( 2 ​ 1 ​ − 2 ​ 1 ​ , 2 ​ 1 ​ + 2 ​ 1 ​ ) = ( 0 , 2 ​ )
Ora, per trovare il versore di \mathbf{u} u \mathbf{u} u :
Calcola la norma di \mathbf{u} u \mathbf{u} u :
\|\mathbf{u}\| = \sqrt{0^2 + (\sqrt{2})^2} = \sqrt{2} ∥ u ∥ = 0 2 + ( 2 ) 2 = 2 \|\mathbf{u}\| = \sqrt{0^2 + (\sqrt{2})^2} = \sqrt{2} ∥ u ∥ = 0 2 + ( 2 ​ ) 2 ​ = 2 ​
Normalizza \mathbf{u} u \mathbf{u} u :
\mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{(0, \sqrt{2})}{\sqrt{2}} = (0, 1) v = u ∥ u ∥ = ( 0 , 2 ) 2 = ( 0 , 1 ) \mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{(0, \sqrt{2})}{\sqrt{2}} = (0, 1) v = ∥ u ∥ u ​ = 2 ​ ( 0 , 2 ​ ) ​ = ( 0 , 1 )
English version
Versor Exercises
Versor Definition
A versor is a vector \mathbf{u} u \mathbf{u} u that satisfies the condition:
\|\mathbf{u}\| = 1 ∥ u ∥ = 1 \|\mathbf{u}\| = 1 ∥ u ∥ = 1
Where \|\mathbf{u}\| ∥ u ∥ \|\mathbf{u}\| ∥ u ∥ is the norm of the vector \mathbf{u} u \mathbf{u} u .
How to Find a Versor
To get a versor from a vector \mathbf{v} v \mathbf{v} v , you can normalize it. The normalization of a vector \mathbf{v} v \mathbf{v} v is given by the formula:
\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} u = v ∥ v ∥ \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} u = ∥ v ∥ v ​
Exercises on Versors
Exercise 1: Finding the Versor of a Vector
Find the versor of the vector:
\mathbf{v} = (3, 4) v = ( 3 , 4 ) \mathbf{v} = (3, 4) v = ( 3 , 4 )
Solution:
Calculate the norm of \mathbf{v} v \mathbf{v} v :
\|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 ∥ v ∥ = 3 2 + 4 2 = 9 + 16 = 25 = 5 \|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 ∥ v ∥ = 3 2 + 4 2 ​ = 9 + 16 ​ = 25 ​ = 5
Normalize the vector:
\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, 4)}{5} = \left(\frac{3}{5}, \frac{4}{5}\right) u = v ∥ v ∥ = ( 3 , 4 ) 5 = ( 3 5 , 4 5 ) \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, 4)}{5} = \left(\frac{3}{5}, \frac{4}{5}\right) u = ∥ v ∥ v ​ = 5 ( 3 , 4 ) ​ = ( 5 3 ​ , 5 4 ​ )
Thus, the unit vector of \mathbf{v} v \mathbf{v} v is \mathbf{u} = \left(\frac{3}{5}, \frac{4}{5}\right) u = ( 3 5 , 4 5 ) \mathbf{u} = \left(\frac{3}{5}, \frac{4}{5}\right) u = ( 5 3 ​ , 5 4 ​ ) .
Exercise 2: Verify that a Vector is a Vector Verify whether the vector \mathbf{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) u = ( 1 2 , 3 2 ) \mathbf{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) u = ( 2 1 ​ , 2 3 ​ ​ ) is a vector.
Solution: Compute the norm of \mathbf{u} u \mathbf{u} u :
\|\mathbf{u}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 ∥ u ∥ = ( 1 2 ) 2 + ( 3 2 ) 2 = 1 4 + 3 4 = 1 = 1 \|\mathbf{u}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 ∥ u ∥ = ( 2 1 ​ ) 2 + ( 2 3 ​ ​ ) 2 ​ = 4 1 ​ + 4 3 ​ ​ = 1 ​ = 1
Since the norm is 1, \mathbf{u} u \mathbf{u} u is a unit vector.
Exercise 3: Sum of Versors Calculate the sum of the unit vectors:
\mathbf{u_1} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text{e} \quad \mathbf{u_2} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) u 1 = ( 1 2 , 1 2 ) e u 2 = ( − 1 2 , 1 2 ) \mathbf{u_1} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text{e} \quad \mathbf{u_2} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) u 1 ​ = ( 2 ​ 1 ​ , 2 ​ 1 ​ ) e u 2 ​ = ( − 2 ​ 1 ​ , 2 ​ 1 ​ )
Solution: Let's add the unit vectors:
\mathbf{u} = \mathbf{u_1} + \mathbf{u_2} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = (0, \sqrt{2}) u = u 1 + u 2 = ( 1 2 − 1 2 , 1 2 + 1 2 ) = ( 0 , 2 ) \mathbf{u} = \mathbf{u_1} + \mathbf{u_2} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = (0, \sqrt{2}) u = u 1 ​ + u 2 ​ = ( 2 ​ 1 ​ − 2 ​ 1 ​ , 2 ​ 1 ​ + 2 ​ 1 ​ ) = ( 0 , 2 ​ )
Now, to find the unit vector of \mathbf{u} u \mathbf{u} u :
Calculate the norm of \mathbf{u} u \mathbf{u} u :
\|\mathbf{u}\| = \sqrt{0^2 + (\sqrt{2})^2} = \sqrt{2} ∥ u ∥ = 0 2 + ( 2 ) 2 = 2 \|\mathbf{u}\| = \sqrt{0^2 + (\sqrt{2})^2} = \sqrt{2} ∥ u ∥ = 0 2 + ( 2 ​ ) 2 ​ = 2 ​
Normalize \mathbf{u} u \mathbf{u} u :
\mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{(0, \sqrt{2})}{\sqrt{2}} = (0, 1) v = u ∥ u ∥ = ( 0 , 2 ) 2 = ( 0 , 1 ) \mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{(0, \sqrt{2})}{\sqrt{2}} = (0, 1) v = ∥ u ∥ u ​ = 2 ​ ( 0 , 2 ​ ) ​ = ( 0 , 1 )
Commenti
Posta un commento