Esercizi sugli Integrali Doppi

Esercizi sugli Integrali Doppi Esercizi sugli Integrali Doppi
Esercizi sugli Integrali Doppi

Versione italiana

Esercizi sugli Integrali Doppi

Concetti Chiave

  1. Definizione di Integrale Doppio:
    L'integrale doppio di una funzione f(x, y)f(x,y)f(x, y) su una regione DDD nel piano è definito come:

    \iint_D f(x, y) \, dA
    Df(x,y)dA\iint_D f(x, y) \, dA

    dove dAdAdA è l'elemento di area, solitamente espresso come dx \, dydxdydx \, dy o dy \, dxdydxdy \, dx.

  2. Regioni di Integrazione:
    Le regioni di integrazione possono essere:

    • Rettangolari: definite da limiti costanti.
    • Non rettangolari: definite da curve, richiedendo una suddivisione in più parti.
  3. Cambio dell'Ordine di Integrazione:
    In alcuni casi, è possibile cambiare l'ordine di integrazione (da dx \, dydxdydx \, dy a dy \, dxdydxdy \, dx e viceversa) per semplificare il calcolo.

  4. Teorema di Fubini:
    Se f(x, y)f(x,y)f(x, y) è continua su una regione rettangolare DDD, allora:

    \iint_D f(x, y) \, dA = \int_a^b \left( \int_c^d f(x, y) \, dy \right) dx
    Df(x,y)dA=ab(cdf(x,y)dy)dx\iint_D f(x, y) \, dA = \int_a^b \left( \int_c^d f(x, y) \, dy \right) dx

    oppure

    \iint_D f(x, y) \, dA = \int_c^d \left( \int_a^b f(x, y) \, dx \right) dy
    Df(x,y)dA=cd(abf(x,y)dx)dy\iint_D f(x, y) \, dA = \int_c^d \left( \int_a^b f(x, y) \, dx \right) dy

Esercizi

Esercizio 1: Calcolare un Integrale Doppio su una Regione Rettangolare

Problema: Calcola l'integrale doppio della funzione f(x, y) = x + yf(x,y)=x+yf(x, y) = x + y sulla regione rettangolare D = [0, 1] \times [0, 2]D=[0,1]×[0,2]D = [0, 1] \times [0, 2].

Soluzione:

  1. Scrivi l'integrale doppio:
    \iint_D (x + y) \, dA = \int_0^1 \left( \int_0^2 (x + y) \, dy \right) dx
    D(x+y)dA=01(02(x+y)dy)dx\iint_D (x + y) \, dA = \int_0^1 \left( \int_0^2 (x + y) \, dy \right) dx
  2. Calcola l'integrale interno:
    \int_0^2 (x + y) \, dy = \left[ xy + \frac{y^2}{2} \right]_0^2 = 2x + 2
    02(x+y)dy=[xy+y22]02=2x+2\int_0^2 (x + y) \, dy = \left[ xy + \frac{y^2}{2} \right]_0^2 = 2x + 2
  3. Calcola l'integrale esterno:
    \int_0^1 (2x + 2) \, dx = \left[ x^2 + 2x \right]_0^1 = 1 + 2 = 3
    01(2x+2)dx=[x2+2x]01=1+2=3\int_0^1 (2x + 2) \, dx = \left[ x^2 + 2x \right]_0^1 = 1 + 2 = 3
  4. Risultato finale:
    \iint_D (x + y) \, dA = 3
    D(x+y)dA=3\iint_D (x + y) \, dA = 3

Esercizio 2: Calcolare un Integrale Doppio su una Regione Non Rettangolare

Problema: Calcola l'integrale doppio della funzione f(x, y) = x^2 + y^2f(x,y)=x2+y2f(x, y) = x^2 + y^2 sulla regione DDD delimitata da y = xy=xy = x e y = x^2y=x2y = x^2 per 0 \leq x \leq 10x10 \leq x \leq 1.

Soluzione:

  1. Scrivi l'integrale doppio:

    \iint_D (x^2 + y^2) \, dA = \int_0^1 \left( \int_{x^2}^{x} (x^2 + y^2) \, dy \right) dx
    D(x2+y2)dA=01(x2x(x2+y2)dy)dx\iint_D (x^2 + y^2) \, dA = \int_0^1 \left( \int_{x^2}^{x} (x^2 + y^2) \, dy \right) dx
  2. Calcola l'integrale interno:

    \int_{x^2}^{x} (x^2 + y^2) \, dy = \left[ x^2y + \frac{y^3}{3} \right]_{x^2}^{x} = \left( x^3 + \frac{x^3}{3} \right) - \left( x^4 + \frac{x^6}{3} \right)
    x2x(x2+y2)dy=[x2y+y33]x2x=(x3+x33)(x4+x63)\int_{x^2}^{x} (x^2 + y^2) \, dy = \left[ x^2y + \frac{y^3}{3} \right]_{x^2}^{x} = \left( x^3 + \frac{x^3}{3} \right) - \left( x^4 + \frac{x^6}{3} \right)
  3. Calcola l'integrale esterno:

    \int_0^1 \left( \frac{4x^3}{3} - x^4 - \frac{x^6}{3} \right) dx
    01(4x33x4x63)dx\int_0^1 \left( \frac{4x^3}{3} - x^4 - \frac{x^6}{3} \right) dx

    Calcoliamo ciascun termine separatamente:

    • \int_0^1 \frac{4x^3}{3} \, dx = \frac{4}{3} \cdot \left[ \frac{x^4}{4} \right]_0^1 = \frac{4}{3} \cdot \frac{1}{4} = \frac{1}{3}014x33dx=43[x44]01=4314=13\int_0^1 \frac{4x^3}{3} \, dx = \frac{4}{3} \cdot \left[ \frac{x^4}{4} \right]_0^1 = \frac{4}{3} \cdot \frac{1}{4} = \frac{1}{3}
    • \int_0^1 x^4 \, dx = \left[ \frac{x^5}{5} \right]_0^1 = \frac{1}{5}01x4dx=[x55]01=15\int_0^1 x^4 \, dx = \left[ \frac{x^5}{5} \right]_0^1 = \frac{1}{5}
    • \int_0^1 \frac{x^6}{3} \, dx = \frac{1}{3} \cdot \left[ \frac{x^7}{7} \right]_0^1 = \frac{1}{3} \cdot \frac{1}{7} = \frac{1}{21}01x63dx=13[x77]01=1317=121\int_0^1 \frac{x^6}{3} \, dx = \frac{1}{3} \cdot \left[ \frac{x^7}{7} \right]_0^1 = \frac{1}{3} \cdot \frac{1}{7} = \frac{1}{21}

    Ora sommiamo i risultati:

    \int_0^1 \left( \frac{4x^3}{3} - x^4 - \frac{x^6}{3} \right) dx = \frac{1}{3} - \frac{1}{5} - \frac{1}{21}
    01(4x33x4x63)dx=1315121\int_0^1 \left( \frac{4x^3}{3} - x^4 - \frac{x^6}{3} \right) dx = \frac{1}{3} - \frac{1}{5} - \frac{1}{21}

    Per sommare queste frazioni, troviamo un denominatore comune, che è 105:

    \frac{1}{3} = \frac{35}{105}, \quad \frac{1}{5} = \frac{21}{105}, \quad \frac{1}{21} = \frac{5}{105}
    13=35105,15=21105,121=5105\frac{1}{3} = \frac{35}{105}, \quad \frac{1}{5} = \frac{21}{105}, \quad \frac{1}{21} = \frac{5}{105}

    Quindi:

    \frac{35}{105} - \frac{21}{105} - \frac{5}{105} = \frac{35 - 21 - 5}{105} = \frac{9}{105} = \frac{3}{35}
    35105211055105=35215105=9105=335\frac{35}{105} - \frac{21}{105} - \frac{5}{105} = \frac{35 - 21 - 5}{105} = \frac{9}{105} = \frac{3}{35}
  4. Risultato finale:

    \iint_D (x^2 + y^2) \, dA = \frac{3}{35}
    D(x2+y2)dA=335\iint_D (x^2 + y^2) \, dA = \frac{3}{35}

Esercizio 3: Cambiare l'Ordine di Integrazione

Problema: Calcola l'integrale doppio della funzione f(x, y) = xyf(x,y)=xyf(x, y) = xy sulla regione DDD delimitata da y = 0y=0y = 0, y = xy=xy = x, e x = 1x=1x = 1.

Soluzione:

  1. Scrivi l'integrale doppio con l'ordine originale:

    \iint_D xy \, dA = \int_0^1 \left( \int_0^x xy \, dy \right) dx
    DxydA=01(0xxydy)dx\iint_D xy \, dA = \int_0^1 \left( \int_0^x xy \, dy \right) dx
  2. Calcola l'integrale interno:

    \int_0^x xy \, dy = x \cdot \left[ \frac{y^2}{2} \right]_0^x = x \cdot \frac{x^2}{2} = \frac{x^3}{2}
    0xxydy=x[y22]0x=xx22=x32\int_0^x xy \, dy = x \cdot \left[ \frac{y^2}{2} \right]_0^x = x \cdot \frac{x^2}{2} = \frac{x^3}{2}
  3. Calcola l'integrale esterno:

    \int_0^1 \frac{x^3}{2} \, dx = \frac{1}{2} \cdot \left[ \frac{x^4}{4} \right]_0^1 = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}
    01x32dx=12[x44]01=1214=18\int_0^1 \frac{x^3}{2} \, dx = \frac{1}{2} \cdot \left[ \frac{x^4}{4} \right]_0^1 = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}
  4. Risultato finale:

    \iint_D xy \, dA = \frac{1}{8}
    DxydA=18\iint_D xy \, dA = \frac{1}{8}

English version

Double Integral Exercises

Key Concepts

  1. Definition of Double Integral:
    The double integral of a function f(x, y)f(x,y)f(x, y) over a region DDD in the plane is defined as:
\iint_D f(x, y) \, dA
Df(x,y)dA\iint_D f(x, y) \, dA

where dAdAdA is the area element, usually expressed as dx \, dydxdydx \, dy or dy \, dxdydxdy \, dx.

  1. Regions of Integration:
    Regions of integration can be:
  • Rectangular: defined by constant limits.
  • Non-rectangular: defined by curves, requiring a subdivision into multiple parts.
  1. Changing the Order of Integration:
    In some cases, it is possible to change the order of integration (from dx \, dydxdydx \, dy to dy \, dxdydxdy \, dx and vice versa) to simplify the calculation.

  2. Fubini's Theorem:
    If f(x, y)f(x,y)f(x, y) is continuous on a rectangular region DDD, then:

\iint_D f(x, y) \, dA = \int_a^b \left( \int_c^d f(x, y) \, dy \right) dx
Df(x,y)dA=ab(cdf(x,y)dy)dx\iint_D f(x, y) \, dA = \int_a^b \left( \int_c^d f(x, y) \, dy \right) dx

or

\iint_D f(x, y) \, dA = \int_c^d \left( \int_a^b f(x, y) \, dx \right) dy
Df(x,y)dA=cd(abf(x,y)dx)dy\iint_D f(x, y) \, dA = \int_c^d \left( \int_a^b f(x, y) \, dx \right) dy

Exercises

Exercise 1: Computing a Double Integral on a Rectangular Region

Problem: Compute the double integral of the function f(x, y) = x + yf(x,y)=x+yf(x, y) = x + y on the rectangular region D = [0, 1] \times [0, 2]D=[0,1]×[0,2]D = [0, 1] \times [0, 2].

Solution:

  1. Write the double integral:
\iint_D (x + y) \, dA = \int_0^1 \left( \int_0^2 (x + y) \, dy \right) dx
D(x+y)dA=01(02(x+y)dy)dx\iint_D (x + y) \, dA = \int_0^1 \left( \int_0^2 (x + y) \, dy \right) dx
  1. Calculate the internal integral:
\int_0^2 (x + y) \, dy = \left[ xy + \frac{y^2}{2} \right]_0^2 = 2x + 2
02(x+y)dy=[xy+y22]02=2x+2\int_0^2 (x + y) \, dy = \left[ xy + \frac{y^2}{2} \right]_0^2 = 2x + 2
  1. Calculate the outer integral:
  2. \int_0^1 (2x + 2) \, dx = \left[ x^2 + 2x \right]_0^1 = 1 + 2 = 3
    01(2x+2)dx=[x2+2x]01=1+2=3\int_0^1 (2x + 2) \, dx = \left[ x^2 + 2x \right]_0^1 = 1 + 2 = 3
  3. Final result: $$\iint_D (x + y) , dA = 3$$

Exercise 2: Calculating a Double Integral over a Non-Region Rectangular

Problem: Compute the double integral of the function f(x, y) = x^2 + y^2f(x,y)=x2+y2f(x, y) = x^2 + y^2 over the region DDD bounded by y = xy=xy = x and y = x^2y=x2y = x^2 for 0 \leq x \leq 10x10 \leq x \leq 1.

Solution:

  1. Write the double integral:
\iint_D (x^2 + y^2) \, dA = \int_0^1 \left( \int_{x^2}^{x} (x^2 + y^2) \, dy \right) dx
D(x2+y2)dA=01(x2x(x2+y2)dy)dx\iint_D (x^2 + y^2) \, dA = \int_0^1 \left( \int_{x^2}^{x} (x^2 + y^2) \, dy \right) dx
  1. Calculate the internal integral:
\int_{x^2}^{x} (x^2 + y^2) \, dy = \left[ x^2y + \frac{y^3}{3} \right]_{x^2}^{x} = \left( x^3 + \frac{x^3}{3} \right) - \left( x^4 + \frac{x^6}{3} \right)
x2x(x2+y2)dy=[x2y+y33]x2x=(x3+x33)(x4+x63)\int_{x^2}^{x} (x^2 + y^2) \, dy = \left[ x^2y + \frac{y^3}{3} \right]_{x^2}^{x} = \left( x^3 + \frac{x^3}{3} \right) - \left( x^4 + \frac{x^6}{3} \right)
  1. Compute the outer integral:
\int_0^1 \left( \frac{4x^3}{3} - x^4 - \frac{x^6}{3} \right) dx
01(4x33x4x63)dx\int_0^1 \left( \frac{4x^3}{3} - x^4 - \frac{x^6}{3} \right) dx

We calculate each term separately: - \int_0^1 \frac{4x^3}{3} \, dx = \frac{4}{3} \cdot \left[ \frac{x^4}{4} \right]_0^1 = \frac{4}{3} \cdot \frac{1}{4} = \frac{1}{3}014x33dx=43[x44]01=4314=13\int_0^1 \frac{4x^3}{3} \, dx = \frac{4}{3} \cdot \left[ \frac{x^4}{4} \right]_0^1 = \frac{4}{3} \cdot \frac{1}{4} = \frac{1}{3} - \int_0^1 x^4 , dx = \left[ \frac{x^5}{5} \right]_0^1 = \frac{1}{5}01x4,dx=[x55]01=15\int_0^1 x^4 , dx = \left[ \frac{x^5}{5} \right]_0^1 = \frac{1}{5} - \int_0^1 \frac{x^6}{3} \, dx = \frac{1}{3} \cdot \left[ \frac{x^7}{7} \right]_0^1 = \frac{1}{3} \cdot \frac{1}{7} = \frac{1}{21}01x63dx=13[x77]01=1317=121\int_0^1 \frac{x^6}{3} \, dx = \frac{1}{3} \cdot \left[ \frac{x^7}{7} \right]_0^1 = \frac{1}{3} \cdot \frac{1}{7} = \frac{1}{21}

Now let's add the results:

\int_0^1 \left( \frac{4x^3}{3} - x^4 - \frac{x^6}{3} \right) dx = \frac{1}{3} - \frac{1}{5} - \frac{1}{21}
01(4x33x4x63)dx=1315121\int_0^1 \left( \frac{4x^3}{3} - x^4 - \frac{x^6}{3} \right) dx = \frac{1}{3} - \frac{1}{5} - \frac{1}{21}

To add these fractions, we find a common denominator, which is 105:

\frac{1}{3} = \frac{35}{105}, \quad \frac{1}{5} = \frac{21}{105}, \quad \frac{1}{21} = \frac{5}{105}
13=35105,15=21105,121=5105\frac{1}{3} = \frac{35}{105}, \quad \frac{1}{5} = \frac{21}{105}, \quad \frac{1}{21} = \frac{5}{105}

So:

\frac{35}{105} - \frac{21}{105} - \frac{5}{105} = \frac{35 - 21 - 5}{105} = \frac{9}{105} = \frac{3}{35}
35105211055105=35215105=9105=335\frac{35}{105} - \frac{21}{105} - \frac{5}{105} = \frac{35 - 21 - 5}{105} = \frac{9}{105} = \frac{3}{35}
  1. Final result:
\iint_D (x^2 + y^2) \, dA = \frac{3}{35}
D(x2+y2)dA=335\iint_D (x^2 + y^2) \, dA = \frac{3}{35}

Exercise 3: Changing the Order of Integration

Problem: Compute the double integral of the function f(x, y) = xyf(x,y)=xyf(x, y) = xy over the region DDD bounded by y = 0y=0y = 0, y = xy=xy = x, and x = 1x=1x = 1.

Solution:

  1. Write the double integral with the original order:
\iint_D xy \, dA = \int_0^1 \left( \int_0^x xy \, dy \right) dx
DxydA=01(0xxydy)dx\iint_D xy \, dA = \int_0^1 \left( \int_0^x xy \, dy \right) dx
  1. Calculate the internal integral:
\int_0^x xy \, dy = x \cdot \left[ \frac{y^2}{2} \right]_0^x = x \cdot \frac{x^2}{2} = \frac{x^3}{2}
0xxydy=x[y22]0x=xx22=x32\int_0^x xy \, dy = x \cdot \left[ \frac{y^2}{2} \right]_0^x = x \cdot \frac{x^2}{2} = \frac{x^3}{2}
  1. Calculate the external integral:
\int_0^1 \frac{x^3}{2} \, dx = \frac{1}{2} \cdot \left[ \frac{x^4}{4} \right]_0^1 = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}
01x32dx=12[x44]01=1214=18\int_0^1 \frac{x^3}{2} \, dx = \frac{1}{2} \cdot \left[ \frac{x^4}{4} \right]_0^1 = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}
  1. Final result:
\iint_D xy \, dA = \frac{1}{8}
DxydA=18\iint_D xy \, dA = \frac{1}{8}

Commenti