Versione italiana
Esercizi su Vettori Perpendicolari a una Base
Introduzione
Un vettore è perpendicolare a un altro vettore se il loro prodotto scalare è uguale a zero. In geometria, questo concetto è fondamentale per determinare la relazione angolare tra due vettori.
Definizione di Prodotto Scalare
Il prodotto scalare di due vettori \vec{a} = (a_1, a_2, a_3) a ⃗ = ( a 1 , a 2 , a 3 ) \vec{a} = (a_1, a_2, a_3) a = ( a 1 ​ , a 2 ​ , a 3 ​ ) e \vec{b} = (b_1, b_2, b_3) b ⃗ = ( b 1 , b 2 , b 3 ) \vec{b} = (b_1, b_2, b_3) b = ( b 1 ​ , b 2 ​ , b 3 ​ ) è dato dalla formula:
\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + a 3 b 3 \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 a ⋅ b = a 1 ​ b 1 ​ + a 2 ​ b 2 ​ + a 3 ​ b 3 ​
Due vettori sono perpendicolari se:
\vec{a} \cdot \vec{b} = 0 a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b} = 0 a ⋅ b = 0
Esercizio 1: Vettore Perpendicolare a un Vettore Dato
Problema: Trova un vettore \vec{b} b ⃗ \vec{b} b che sia perpendicolare al vettore \vec{a} = (3, 4) a ⃗ = ( 3 , 4 ) \vec{a} = (3, 4) a = ( 3 , 4 ) .
Soluzione:
Sappiamo che \vec{a} \cdot \vec{b} = 0 a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b} = 0 a ⋅ b = 0 . Sia \vec{b} = (x, y) b ⃗ = ( x , y ) \vec{b} = (x, y) b = ( x , y ) .
Calcoliamo il prodotto scalare:\vec{a} \cdot \vec{b} = 3x + 4y = 0 a ⃗ ⋅ b ⃗ = 3 x + 4 y = 0 \vec{a} \cdot \vec{b} = 3x + 4y = 0 a ⋅ b = 3 x + 4 y = 0
Possiamo scegliere un valore per x x x x e risolvere per y y y y . Ad esempio, poniamo x = 4 x = 4 x = 4 x = 4 :3(4) + 4y = 0 \implies 12 + 4y = 0 \implies 4y = -12 \implies y = -3 3 ( 4 ) + 4 y = 0    ⟹    12 + 4 y = 0    ⟹    4 y = − 12    ⟹    y = − 3 3(4) + 4y = 0 \implies 12 + 4y = 0 \implies 4y = -12 \implies y = -3 3 ( 4 ) + 4 y = 0 ⟹ 12 + 4 y = 0 ⟹ 4 y = − 12 ⟹ y = − 3
Quindi, un vettore perpendicolare a \vec{a} a ⃗ \vec{a} a è \vec{b} = (4, -3) b ⃗ = ( 4 , − 3 ) \vec{b} = (4, -3) b = ( 4 , − 3 ) .
Esercizio 2: Vettore Perpendicolare a una Base in uno Spazio Tridimensionale
Problema: Trova un vettore \vec{c} c ⃗ \vec{c} c che sia perpendicolare al piano definito dai vettori \vec{u} = (1, 2, 3) u ⃗ = ( 1 , 2 , 3 ) \vec{u} = (1, 2, 3) u = ( 1 , 2 , 3 ) e \vec{v} = (4, 5, 6) v ⃗ = ( 4 , 5 , 6 ) \vec{v} = (4, 5, 6) v = ( 4 , 5 , 6 ) .
Soluzione:
Per trovare un vettore perpendicolare a due vettori in uno spazio tridimensionale, possiamo utilizzare il prodotto vettoriale:\vec{c} = \vec{u} \times \vec{v} c ⃗ = u ⃗ × v ⃗ \vec{c} = \vec{u} \times \vec{v} c = u × v
Calcoliamo il prodotto vettoriale:\vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} c ⃗ = ∣ i ^ j ^ k ^ 1 2 3 4 5 6 ∣ \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} c = ​ i ^ 1 4 ​ j ^ ​ 2 5 ​ k ^ 3 6 ​ ​
= \hat{i}(2 \cdot 6 - 3 \cdot 5) - \hat{j}(1 \cdot 6 - 3 \cdot 4) + \hat{k}(1 \cdot 5 - 2 \cdot 4) = i ^ ( 2 ⋅ 6 − 3 ⋅ 5 ) − j ^ ( 1 ⋅ 6 − 3 ⋅ 4 ) + k ^ ( 1 ⋅ 5 − 2 ⋅ 4 ) = \hat{i}(2 \cdot 6 - 3 \cdot 5) - \hat{j}(1 \cdot 6 - 3 \cdot 4) + \hat{k}(1 \cdot 5 - 2 \cdot 4) = i ^ ( 2 ⋅ 6 − 3 ⋅ 5 ) − j ^ ​ ( 1 ⋅ 6 − 3 ⋅ 4 ) + k ^ ( 1 ⋅ 5 − 2 ⋅ 4 )
= \hat{i}(12 - 15) - \hat{j}(6 - 12) + \hat{k}(5 - 8) = i ^ ( 12 − 15 ) − j ^ ( 6 − 12 ) + k ^ ( 5 − 8 ) = \hat{i}(12 - 15) - \hat{j}(6 - 12) + \hat{k}(5 - 8) = i ^ ( 12 − 15 ) − j ^ ​ ( 6 − 12 ) + k ^ ( 5 − 8 )
= \hat{i}(-3) + \hat{j}(6) + \hat{k}(-3) = i ^ ( − 3 ) + j ^ ( 6 ) + k ^ ( − 3 ) = \hat{i}(-3) + \hat{j}(6) + \hat{k}(-3) = i ^ ( − 3 ) + j ^ ​ ( 6 ) + k ^ ( − 3 )
= (-3, 6, -3) = ( − 3 , 6 , − 3 ) = (-3, 6, -3) = ( − 3 , 6 , − 3 )
Quindi, un vettore perpendicolare al piano definito da \vec{u} u ⃗ \vec{u} u e \vec{v} v ⃗ \vec{v} v è \vec{c} = (-3, 6, -3) c ⃗ = ( − 3 , 6 , − 3 ) \vec{c} = (-3, 6, -3) c = ( − 3 , 6 , − 3 ) .
English version
Exercises on Vectors Perpendicular to a Base
Introduction
A vector is perpendicular to another vector if their scalar product is equal to zero. In geometry, this concept is fundamental to determining the angular relationship between two vectors.
Definition of Dot Product
The dot product of two vectors \vec{a} = (a_1, a_2, a_3) a ⃗ = ( a 1 , a 2 , a 3 ) \vec{a} = (a_1, a_2, a_3) a = ( a 1 ​ , a 2 ​ , a 3 ​ ) and \vec{b} = (b_1, b_2, b_3) b ⃗ = ( b 1 , b 2 , b 3 ) \vec{b} = (b_1, b_2, b_3) b = ( b 1 ​ , b 2 ​ , b 3 ​ ) is given by the formula:
\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + a 3 b 3 \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 a ⋅ b = a 1 ​ b 1 ​ + a 2 ​ b 2 ​ + a 3 ​ b 3 ​
Two vectors are perpendicular if:
\vec{a} \cdot \vec{b} = 0 a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b} = 0 a ⋅ b = 0
Exercise 1: Vector Perpendicular to a Given Vector
Problem: Find a vector \vec{b} b ⃗ \vec{b} b that is perpendicular to the vector \vec{a} = (3, 4) a ⃗ = ( 3 , 4 ) \vec{a} = (3, 4) a = ( 3 , 4 ) .
Solution:
We know that \vec{a} \cdot \vec{b} = 0 a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b} = 0 a ⋅ b = 0 . Let \vec{b} = (x, y) b ⃗ = ( x , y ) \vec{b} = (x, y) b = ( x , y ) .
Calculate the scalar product:
\vec{a} \cdot \vec{b} = 3x + 4y = 0 a ⃗ ⋅ b ⃗ = 3 x + 4 y = 0 \vec{a} \cdot \vec{b} = 3x + 4y = 0 a ⋅ b = 3 x + 4 y = 0
We can choose a value for x x x x and solve for y y y y . For example, let x = 4 x = 4 x = 4 x = 4 :
3(4) + 4y = 0 \implies 12 + 4y = 0 \implies 4y = -12 \implies y = -3 3 ( 4 ) + 4 y = 0    ⟹    12 + 4 y = 0    ⟹    4 y = − 12    ⟹    y = − 3 3(4) + 4y = 0 \implies 12 + 4y = 0 \implies 4y = -12 \implies y = -3 3 ( 4 ) + 4 y = 0 ⟹ 12 + 4 y = 0 ⟹ 4 y = − 12 ⟹ y = − 3
Then, a vector perpendicular to \vec{a} a ⃗ \vec{a} a is \vec{b} = (4, -3) b ⃗ = ( 4 , − 3 ) \vec{b} = (4, -3) b = ( 4 , − 3 ) .
Exercise 2: Vector Perpendicular to a Basis in a Three-Dimensional Space
Problem: Find a vector \vec{c} c ⃗ \vec{c} c that is perpendicular to the plane defined by the vectors \vec{u} = (1, 2, 3) u ⃗ = ( 1 , 2 , 3 ) \vec{u} = (1, 2, 3) u = ( 1 , 2 , 3 ) and \vec{v} = (4, 5, 6) v ⃗ = ( 4 , 5 , 6 ) \vec{v} = (4, 5, 6) v = ( 4 , 5 , 6 ) .
Solution:
To find a vector perpendicular to two vectors in a three-dimensional space, we can use the vector product:
\vec{c} = \vec{u} \times \vec{v} c ⃗ = u ⃗ × v ⃗ \vec{c} = \vec{u} \times \vec{v} c = u × v
Let's calculate the vector product:
\vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} c ⃗ = ∣ i ^ j ^ k ^ 1 2 3 4 5 6 ∣ \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} c = ​ i ^ 1 4 ​ j ^ ​ 2 5 ​ k ^ 3 6 ​ ​
= \hat{i}(2 \cdot 6 - 3 \cdot 5) - \hat{j}(1 \cdot 6 - 3 \cdot 4) + \hat{k}(1 \cdot 5 - 2 \cdot 4) = i ^ ( 2 ⋅ 6 − 3 ⋅ 5 ) − j ^ ( 1 ⋅ 6 − 3 ⋅ 4 ) + k ^ ( 1 ⋅ 5 − 2 ⋅ 4 ) = \hat{i}(2 \cdot 6 - 3 \cdot 5) - \hat{j}(1 \cdot 6 - 3 \cdot 4) + \hat{k}(1 \cdot 5 - 2 \cdot 4) = i ^ ( 2 ⋅ 6 − 3 ⋅ 5 ) − j ^ ​ ( 1 ⋅ 6 − 3 ⋅ 4 ) + k ^ ( 1 ⋅ 5 − 2 ⋅ 4 )
= \hat{i}(12 - 15) - \hat{j}(6 - 12) + \hat{k}(5 - 8) = i ^ ( 12 − 15 ) − j ^ ( 6 − 12 ) + k ^ ( 5 − 8 ) = \hat{i}(12 - 15) - \hat{j}(6 - 12) + \hat{k}(5 - 8) = i ^ ( 12 − 15 ) − j ^ ​ ( 6 − 12 ) + k ^ ( 5 − 8 )
= \hat{i}(-3) + \hat{j}(6) + \hat{k}(-3) = i ^ ( − 3 ) + j ^ ( 6 ) + k ^ ( − 3 ) = \hat{i}(-3) + \hat{j}(6) + \hat{k}(-3) = i ^ ( − 3 ) + j ^ ​ ( 6 ) + k ^ ( − 3 )
= (-3, 6, -3) = ( − 3 , 6 , − 3 ) = (-3, 6, -3) = ( − 3 , 6 , − 3 )
Then, a vector perpendicular to the plane defined by \vec{u} u ⃗ \vec{u} u and \vec{v} v ⃗ \vec{v} v is \vec{c} = (-3, 6, -3) c ⃗ = ( − 3 , 6 , − 3 ) \vec{c} = (-3, 6, -3) c = ( − 3 , 6 , − 3 ) .
Commenti
Posta un commento